Identification
Name:Undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase
Synonyms:
  • UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase
  • Undecaprenyl-phosphate GlcNAc-1-phosphate transferase
Gene Name:wecA
Enzyme Class:
Biological Properties
General Function:Involved in magnesium ion binding
Specific Function:Catalyzes the transfer of the GlcNAc-1-phosphate moiety from UDP-GlcNAc onto the carrier lipid undecaprenyl phosphate (C55-P), yielding GlcNAc-pyrophosphoryl-undecaprenyl (GlcNAc-PP- C55). It is the first lipid-linked intermediate involved in enterobacterial common antigen (ECA) synthesis and an acceptor for the addition of subsequent sugars to complete the biosynthesis of O-antigen. The apparent affinity of WecA for the polyisoprenyl phosphate substrates increases with the polyisoprenyl chain length. WecA is unable to utilize dolichyl phosphate (Dol-P)
Cellular Location:Cell inner membrane; Multi-pass membrane protein
SMPDB Pathways:
  • Secondary Metabolites: enterobacterial common antigen biosynthesis PW000959
  • Secondary Metabolites: enterobacterial common antigen biosynthesis 2 PW002045
  • Secondary Metabolites: enterobacterial common antigen biosynthesis 3 PW002046
KEGG Pathways:Not Available
KEGG Reactions:
1.0Thumb+1.0Thumb1.0N-Acetyl-D-glucosaminyldiphosphoundecaprenol+1.0Thumb+1.0Thumb
SMPDB Reactions:
1.0di-trans,octa-cis-undecaprenyl phosphate+1.0Thumb1.0Thumb+1.0Thumb
EcoCyc Reactions:
1.0Thumb+1.0Thumb1.0Thumb+1.0Thumb
Complex Reactions:
1.0Thumb+1.0Thumb1.0Thumb+1.0Thumb
Metabolites:
ECMDB IDNameView
ECMDB20310Di-trans,poly-cis-undecaprenyl phosphateMetaboCard
ECMDB23094N-Acetyl-D-glucosaminyldiphospho-di-trans,octa-cis-undecaprenolMetaboCard
ECMDB24257N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenolMetaboCard
ECMDB20208Undecaprenyl phosphateMetaboCard
ECMDB20560Undecaprenyl-N-acetyl-alpha-D-glucosaminyl-pyrophosphateMetaboCard
ECMDB00288Uridine 5'-monophosphateMetaboCard
ECMDB00290Uridine diphosphate-N-acetylglucosamineMetaboCard
GO Classification:
Component
cell part
cell wall
external encapsulating structure
Gram-negative-bacterium-type cell wall
integral to membrane
intrinsic to membrane
membrane part
peptidoglycan-based cell wall
Function
binding
catalytic activity
cation binding
ion binding
magnesium ion binding
manganese ion binding
metal ion binding
phospho-N-acetylmuramoyl-pentapeptide-transferase activity
phosphotransferase activity, for other substituted phosphate groups
transferase activity
transferase activity, transferring phosphorus-containing groups
transition metal ion binding
Process
lipid biosynthetic process
lipid metabolic process
lipopolysaccharide biosynthetic process
metabolic process
primary metabolic process
Gene Properties
Blattner:b3784
Gene OrientationClockwise
Centisome Percentage:85.48
Left Sequence End3965939
Right Sequence End3967042
Gene Sequence:
>1104 bp
ATGAATTTACTGACAGTGAGTACTGATCTCATCAGTATTTTTTTATTCACGACACTGTTT
CTGTTTTTTGCCCGTAAGGTGGCAAAAAAAGTCGGTTTAGTGGATAAACCAAACTTCCGC
AAACGTCACCAGGGGTTGATACCACTCGTTGGGGGTATTTCGGTTTACGCAGGGATTTGC
TTCACGTTCGGAATTGTCGATTACTATATTCCGCATGCATCTCTCTATCTCGCTTGTGCC
GGTGTGCTTGTTTTCATTGGCGCGCTGGATGACCGTTTTGATATCAGCGTAAAAATCCGT
GCCACCATACAGGCCGCTGTTGGCATTGTTATGATGGTGTTTGGCAACCTTTATCTCAGT
AGCCTGGGTTATATCTTTGGCTCCTGGGAGATGGTGCTCGGACCGTTTGGTTACTTCCTG
ACGCTATTTGCCGTCTGGGCGGCCATTAATGCGTTCAACATGGTTGATGGCATTGATGGC
TTGCTGGGCGGGTTGTCCTGCGTCTCGTTTGCAGCAATCGGTATGATTTTGTGGTTCGAC
GGGCAAACCAGCCTCGCAATCTGGTGCTTTGCGATGATCGCCGCCATCCTGCCATATATC
ATGCTTAACCTTGGTATCCTGGGTCGCCGCTACAAAGTCTTTATGGGTGATGCGGGCAGT
ACGCTGATTGGTTTTACCGTGATCTGGATCCTGCTCGAAACGACCCAGGGCAAAACCCAT
CCCATCAGCCCGGTTACCGCTTTGTGGATAATCGCCATTCCGCTAATGGATATGGTGGCG
ATTATGTACCGTCGCCTGCGTAAAGGCATGAGCCCATTCTCTCCTGACCGTCAGCATATT
CACCATTTGATCATGCGTGCCGGGTTTACTTCCCGTCAGGCGTTTGTGCTGATTACCCTT
GCCGCAGCACTGCTCGCTTCCATTGGCGTGCTGGCAGAATATTCTCATTTTGTCCCGGAG
TGGGTCATGCTGGTGCTCTTTTTGCTAGCATTCTTCCTCTATGGATATTGCATTAAGCGT
GCCTGGAAAGTTGCTCGCTTTATTAAGCGCGTAAAACGCAGACTGCGTAGAAATCGTGGT
GGCAGCCCCAATTTAACCAAATAA
Protein Properties
Pfam Domain Function:
Protein Residues:367
Protein Molecular Weight:40957
Protein Theoretical pI:10
Signaling Regions:
  • None
Transmembrane Regions:
  • 3-23
  • 46-66
  • 69-89
  • 106-126
  • 132-152
  • 158-178
  • 187-207
  • 213-233
  • 242-262
  • 294-314
  • 318-338
Protein Sequence:
>Undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase
MNLLTVSTDLISIFLFTTLFLFFARKVAKKVGLVDKPNFRKRHQGLIPLVGGISVYAGIC
FTFGIVDYYIPHASLYLACAGVLVFIGALDDRFDISVKIRATIQAAVGIVMMVFGKLYLS
SLGYIFGSWEMVLGPFGYFLTLFAVWAAINAFNMVDGIDGLLGGLSCVSFAAIGMILWFD
GQTSLAIWCFAMIAAILPYIMLNLGILGRRYKVFMGDAGSTLIGFTVIWILLETTQGKTH
PISPVTALWIIAIPLMDMVAIMYRRLRKGMSPFSPDRQHIHHLIMRAGFTSRQAFVLITL
AAALLASIGVLAEYSHFVPEWVMLVLFLLAFFLYGYCIKRAWKVARFIKRVKRRLRRNRG
GSPNLTK
References
External Links:
ResourceLink
Uniprot ID:P0AC78
Uniprot Name:WECA_ECOLI
GenBank Gene ID:AF248031
Genebank Protein ID:11023183
Ecogene ID:EG10840
Ecocyc:EG10840
ColiBase:b3784
Kegg Gene:b3784
EchoBASE ID:EB0833
CCDB:WECA_ECOLI
BacMap:16131640
General Reference:
  • Amer, A. O., Valvano, M. A. (2000). "The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion." J Bacteriol 182:498-503. Pubmed: 10629198
  • Amer, A. O., Valvano, M. A. (2001). "Conserved amino acid residues found in a predicted cytosolic domain of the lipopolysaccharide biosynthetic protein WecA are implicated in the recognition of UDP-N-acetylglucosamine." Microbiology 147:3015-3025. Pubmed: 11700352
  • Amer, A. O., Valvano, M. A. (2002). "Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli." Microbiology 148:571-582. Pubmed: 11832520
  • Anderson, M. S., Eveland, S. S., Price, N. P. (2000). "Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate:N-acetylhexosamine-1-phosphate transferase family." FEMS Microbiol Lett 191:169-175. Pubmed: 11024259
  • Blattner, F. R., Plunkett, G. 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., Shao, Y. (1997). "The complete genome sequence of Escherichia coli K-12." Science 277:1453-1462. Pubmed: 9278503
  • Daley, D. O., Rapp, M., Granseth, E., Melen, K., Drew, D., von Heijne, G. (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308:1321-1323. Pubmed: 15919996
  • Daniels, D. L., Plunkett, G. 3rd, Burland, V., Blattner, F. R. (1992). "Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes." Science 257:771-778. Pubmed: 1379743
  • Hayashi, K., Morooka, N., Yamamoto, Y., Fujita, K., Isono, K., Choi, S., Ohtsubo, E., Baba, T., Wanner, B. L., Mori, H., Horiuchi, T. (2006). "Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110." Mol Syst Biol 2:2006.0007. Pubmed: 16738553
  • Lehrer, J., Vigeant, K. A., Tatar, L. D., Valvano, M. A. (2007). "Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide." J Bacteriol 189:2618-2628. Pubmed: 17237164
  • Meier-Dieter, U., Barr, K., Starman, R., Hatch, L., Rick, P. D. (1992). "Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe-rff gene cluster." J Biol Chem 267:746-753. Pubmed: 1730666
  • Ohta, M., Ina, K., Kusuzaki, K., Kido, N., Arakawa, Y., Kato, N. (1991). "Cloning and expression of the rfe-rff gene cluster of Escherichia coli." Mol Microbiol 5:1853-1862. Pubmed: 1722555
  • Rush, J. S., Rick, P. D., Waechter, C. J. (1997). "Polyisoprenyl phosphate specificity of UDP-GlcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase from E.coli." Glycobiology 7:315-322. Pubmed: 9134438