Record Information
Version2.0
Creation Date2012-08-09 09:16:12 -0600
Update Date2015-09-13 15:15:33 -0600
Secondary Accession Numbers
  • ECMDB21427
Identification
Name:Myristic acid
DescriptionMyristic acid ia a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme.
Structure
Thumb
Synonyms:
  • 1-Tridecanecarboxylate
  • 1-Tridecanecarboxylic acid
  • Crodacid
  • Myristate
  • Myristate pure
  • Myristic acid pure
  • Myristoate
  • Myristoic acid
  • N-Tetradecan-1-oate
  • N-Tetradecan-1-oic acid
  • N-Tetradecanoate
  • N-Tetradecanoic acid
  • Tetradecanoate
  • Tetradecanoic (Myristic) acid
  • Tetradecanoic acid
Chemical Formula:C14H28O2
Weight:Average: 228.3709
Monoisotopic: 228.20893014
InChI Key:TUNFSRHWOTWDNC-UHFFFAOYSA-N
InChI:InChI=1S/C14H28O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14(15)16/h2-13H2,1H3,(H,15,16)
CAS number:544-63-8
IUPAC Name:tetradecanoic acid
Traditional IUPAC Name:myristic acid
SMILES:CCCCCCCCCCCCCC(O)=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentLong-chain fatty acids
Alternative Parents
Substituents
  • Long-chain fatty acid
  • Straight chain fatty acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-1
Melting point:53.9 °C
Experimental Properties:
PropertyValueSource
Water Solubility:0.00107 mg/mL [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP:6.11 [SANGSTER (1993)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility0.0017 g/LALOGPS
logP6.1ALOGPS
logP5.37ChemAxon
logS-5.1ALOGPS
pKa (Strongest Acidic)4.95ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 ŲChemAxon
Rotatable Bond Count12ChemAxon
Refractivity67.88 m³·mol⁻¹ChemAxon
Polarizability30.1 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Membrane
Reactions:
SMPDB Pathways:
fatty acid oxidation (myristate)PW001021 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:Not Available
EcoCyc Pathways:Not Available
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (1 TMS)splash10-017i-2910000000-66b35fb8449ba9de9cd6View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-017i-2910000000-66b35fb8449ba9de9cd6View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-f45703c464ca75f98f26View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9700000000-ec8d81e37bc3b8531c99View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-0079-9330000000-5ec01705dfacc992be28View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-004i-0090000000-73ac1cfb8731e6318cc5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-004i-1090000000-3aa768974da0ea81c1c9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-004i-0090000000-22cd107a87b9acf058c5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-004i-0090000000-2f7bb32e4b42206d851dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-004i-2090000000-d45cffc15e2efbd45cd6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-001i-9200000000-dbca68238dfebab35251View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-004r-9000000000-26827be8f8c2a4fbfd75View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 30V, Negativesplash10-0006-0090000000-110165b889d231d09d59View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-0006-0090000000-110165b889d231d09d59View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 20V, Negativesplash10-0006-0090000000-110165b889d231d09d59View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF , Negativesplash10-0006-0090000000-110165b889d231d09d59View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 30V, Negativesplash10-004i-0090000000-91f4f874b25705464fb0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - ESI-TOF 10V, Negativesplash10-004i-0090000000-15225a799e0a0bcff7c7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-0290000000-b88426a2003ceec57e30View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-01q9-5940000000-6c73dc0032502abe4fc4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-9300000000-bde9bfcd2889066fc853View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-0290000000-b88426a2003ceec57e30View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-01q9-5940000000-6c73dc0032502abe4fc4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052f-9300000000-bde9bfcd2889066fc853View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0190000000-a32f141c7b5af0bc4de1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-057i-1490000000-14bfb0d0344d7cf63443View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9400000000-512abb1322963024336fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0190000000-a32f141c7b5af0bc4de1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-057i-1490000000-14bfb0d0344d7cf63443View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4l-9400000000-512abb1322963024336fView in MoNA
MSMass Spectrum (Electron Ionization)splash10-06xx-9200000000-4fdd41f0461ff5186901View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Bhattacharya A, Ghosal SK: Permeation kinetics of ketotifen fumarate alone and in combination with hydrophobic permeation enhancers through human cadaver epidermis. Boll Chim Farm. 2000 Jul-Aug;139(4):177-81. Pubmed: 11059101
  • Brod SA, Malone M, Darcan S, Papolla M, Nelson L: Ingested interferon alpha suppresses type I diabetes in non-obese diabetic mice. Diabetologia. 1998 Oct;41(10):1227-32. Pubmed: 9794112
  • Cater NB, Denke MA: Behenic acid is a cholesterol-raising saturated fatty acid in humans. Am J Clin Nutr. 2001 Jan;73(1):41-4. Pubmed: 11124748
  • Curry S, Brick P, Franks NP: Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta. 1999 Nov 23;1441(2-3):131-40. Pubmed: 10570241
  • Dabadie H, Peuchant E, Bernard M, LeRuyet P, Mendy F: Moderate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventional study. J Nutr Biochem. 2005 Jun;16(6):375-82. Pubmed: 15936650
  • Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69. Pubmed: 8412012
  • Kageura M, Hara K, Hieda Y, Takamoto M, Fujiwara Y, Fukuma Y, Kashimura S: [Screening of drugs and chemicals by wide-bore capillary gas chromatography with flame ionization and nitrogen phosphorus detectors] Nihon Hoigaku Zasshi. 1989 Apr;43(2):161-5. Pubmed: 2810891
  • Kaminskas A, Zieden B, Elving B, Kristenson M, Abaravicius A, Bergdahl B, Olsson AG, Kucinskiene Z: Adipose tissue fatty acids in men from two populations with different cardiovascular risk: the LiVicordia study. Scand J Clin Lab Invest. 1999 May;59(3):227-32. Pubmed: 10400167
  • Majeti BK, Karmali PP, Madhavendra SS, Chaudhuri A: Example of fatty acid-loaded lipoplex in enhancing in vitro gene transfer efficacies of cationic amphiphile. Bioconjug Chem. 2005 May-Jun;16(3):676-84. Pubmed: 15898737
  • Matsubara M: [Structures and molecular recognition of MARCKS family proteins] Seikagaku. 2005 Jan;77(1):50-5. Pubmed: 15770953
  • Ohdoi C, Nyhan WL, Kuhara T: Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):123-30. Pubmed: 12829005
  • Pieterse Z, Jerling JC, Oosthuizen W, Kruger HS, Hanekom SM, Smuts CM, Schutte AE: Substitution of high monounsaturated fatty acid avocado for mixed dietary fats during an energy-restricted diet: effects on weight loss, serum lipids, fibrinogen, and vascular function. Nutrition. 2005 Jan;21(1):67-75. Pubmed: 15661480
  • Schewe T, Hiebsch C: [Action of respiratory inhibitors on the electron transport system of Escherichia coli] Acta Biol Med Ger. 1977;36(7-8):961-6. Pubmed: 347849
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Yurtsever D. (2007). Fatty acid methyl ester profiling of Enterococcus and Esherichia coli for microbial source tracking. M.sc. Thesis. Villanova University: U.S.A
  • Zhu W, Smart EJ: Myristic acid stimulates endothelial nitric-oxide synthase in a CD36- and an AMP kinase-dependent manner. J Biol Chem. 2005 Aug 19;280(33):29543-50. Epub 2005 Jun 21. Pubmed: 15970594
Synthesis Reference:Greaves, W. S.; Linstead, R. P.; Shephard, B. R.; Thomas, S. L. S.; Weedon, B. C. L. Anodic syntheses. I. New syntheses of stearic, myristic, and other acids. Journal of the Chemical Society (1950), 3326-30.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID28875
HMDB IDHMDB00806
Pubchem Compound ID11005
Kegg IDC06424
ChemSpider ID10539
WikipediaMyristic acid
BioCyc IDNot Available
Ligand ExpoMYR

Enzymes

General function:
Involved in transferase activity
Specific function:
Malonyl-CoA + [acyl-carrier-protein] = CoA + malonyl-[acyl-carrier-protein]
Gene Name:
fabD
Uniprot ID:
P0AAI9
Molecular weight:
32417
Reactions
Malonyl-CoA + [acyl-carrier-protein] = CoA + malonyl-[acyl-carrier-protein].
General function:
Involved in transferase activity, transferring acyl groups
Specific function:
Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3-phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1
Gene Name:
aas
Uniprot ID:
P31119
Molecular weight:
80699
Reactions
Acyl-[acyl-carrier-protein] + O-(2-acyl-sn-glycero-3-phospho)ethanolamine = [acyl-carrier-protein] + O-(1-beta-acyl-2-acyl-sn-glycero-3-phospho)ethanolamine.
ATP + an acid + [acyl-carrier-protein] = AMP + diphosphate + acyl-[acyl-carrier-protein].
General function:
Involved in catalytic activity
Specific function:
Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids
Gene Name:
fadD
Uniprot ID:
P69451
Molecular weight:
62332
Reactions
ATP + a long-chain fatty acid + CoA = AMP + diphosphate + an acyl-CoA.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the esterification, concomitant with transport, of exogenous fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. It has a low activity on medium or long chain fatty acids and is maximally active on C6 and C8 substrates
Gene Name:
fadK
Uniprot ID:
P38135
Molecular weight:
60773
Reactions
ATP + a short-chain carboxylic acid + CoA = AMP + diphosphate + an acyl-CoA.
General function:
Involved in fatty acid biosynthetic process
Specific function:
Carrier of the growing fatty acid chain in fatty acid biosynthesis
Gene Name:
acpP
Uniprot ID:
P0A6A8
Molecular weight:
8640