Record Information
Version2.0
Creation Date2012-05-31 14:09:02 -0600
Update Date2015-06-03 15:54:53 -0600
Secondary Accession Numbers
  • ECMDB06557
Identification
Name:ADP-Glucose
DescriptionADP-glucose serves as the glycosyl donor for formation of bacterial glycogen, amylose in green algae, and amylopectin in higher plants. It is an intermediate in starch and sucrose metabolism and involved in amino sugar and nucleotide sugar metabolism. (KEGG)
Structure
Thumb
Synonyms:
  • Adenosine 5'-(trihydrogen diphosphate) glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphate) p'-a-delta-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphate) p'-a-δ-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphate) P'-alpha-delta-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphate) p'-α-δ-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphoric acid) glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphoric acid) p'-a-delta-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphoric acid) p'-a-δ-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphoric acid) p'-alpha-delta-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen diphosphoric acid) p'-α-δ-glucopyranosyl ester
  • Adenosine 5'-(trihydrogen pyrophosphate) mono-D-glucosyl ester
  • Adenosine 5'-(trihydrogen pyrophosphate) mono-delta-glucosyl ester
  • Adenosine 5'-(trihydrogen pyrophosphate) mono-δ-glucosyl ester
  • Adenosine 5'-(trihydrogen pyrophosphoric acid) mono-D-glucosyl ester
  • Adenosine 5'-(trihydrogen pyrophosphoric acid) mono-delta-glucosyl ester
  • Adenosine 5'-(trihydrogen pyrophosphoric acid) mono-δ-glucosyl ester
  • Adenosine 5'-diphosphoglucose
  • Adenosine 5'-pyrophosphate a-D-glucosyl ester
  • Adenosine 5'-pyrophosphate a-delta-glucosyl ester
  • Adenosine 5'-pyrophosphate a-δ-glucosyl ester
  • Adenosine 5'-pyrophosphate alpha-D-glucosyl ester
  • Adenosine 5'-pyrophosphate alpha-delta-glucosyl ester
  • Adenosine 5'-pyrophosphate glucosyl ester
  • Adenosine 5'-pyrophosphate mono-D-glucosyl ester
  • Adenosine 5'-pyrophosphate mono-delta-glucosyl ester
  • Adenosine 5'-pyrophosphate mono-δ-glucosyl ester
  • Adenosine 5'-pyrophosphate α-D-glucosyl ester
  • Adenosine 5'-pyrophosphate α-δ-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid a-D-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid a-delta-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid a-δ-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid alpha-D-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid alpha-delta-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid glucosyl ester
  • Adenosine 5'-pyrophosphoric acid mono-D-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid mono-delta-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid mono-δ-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid α-D-glucosyl ester
  • Adenosine 5'-pyrophosphoric acid α-δ-glucosyl ester
  • Adenosine diphosphate D-glucose
  • Adenosine diphosphate glucose
  • Adenosine diphosphoglucose
  • Adenosine diphosphoric acid D-glucose
  • Adenosine diphosphoric acid glucose
  • Adenosine pyrophosphate-glucose
  • Adenosine pyrophosphoric acid-glucose
  • Adenosine-5'-diphosphate-glucose
  • Adenosine-5'-diphosphoric acid-glucose
  • ADP-D-Glucose
  • ADP-Glc
  • ADP-Glucose
  • ADP-α-D-glucose
Chemical Formula:C16H25N5O15P2
Weight:Average: 589.3417
Monoisotopic: 589.082238179
InChI Key:WFPZSXYXPSUOPY-ROYWQJLOSA-N
InChI:InChI=1S/C16H25N5O15P2/c17-13-7-14(19-3-18-13)21(4-20-7)15-11(26)9(24)6(33-15)2-32-37(28,29)36-38(30,31)35-16-12(27)10(25)8(23)5(1-22)34-16/h3-6,8-12,15-16,22-27H,1-2H2,(H,28,29)(H,30,31)(H2,17,18,19)/t5-,6-,8-,9-,10+,11-,12-,15-,16-/m1/s1
CAS number:2140-58-1
IUPAC Name:[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid
Traditional IUPAC Name:adp glucose
SMILES:NC1=C2N=CN([C@@H]3O[C@H](CO[P@](O)(=O)O[P@](O)(=O)O[C@H]4O[C@H](CO)[C@@H](O)[C@H](O)[C@H]4O)[C@@H](O)[C@H]3O)C2=NC=N1
Chemical Taxonomy
Description belongs to the class of organic compounds known as purine nucleotide sugars. These are purine nucleotides bound to a saccharide derivative through the terminal phosphate group.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine nucleotide sugars
Direct ParentPurine nucleotide sugars
Alternative Parents
Substituents
  • Purine nucleotide sugar
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Imidazopyrimidine
  • Purine
  • Aminopyrimidine
  • Monoalkyl phosphate
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Oxane
  • Phosphoric acid ester
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Tetrahydrofuran
  • Azole
  • Imidazole
  • Heteroaromatic compound
  • Secondary alcohol
  • Organoheterocyclic compound
  • Azacycle
  • Polyol
  • Oxacycle
  • Organic oxide
  • Organic nitrogen compound
  • Alcohol
  • Hydrocarbon derivative
  • Amine
  • Organonitrogen compound
  • Primary alcohol
  • Primary amine
  • Organooxygen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-2
Melting point:Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility4.84 g/LALOGPS
logP-1.8ALOGPS
logP-6.8ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)1.73ChemAxon
pKa (Strongest Basic)3.99ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count16ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area311.75 ŲChemAxon
Rotatable Bond Count9ChemAxon
Refractivity117.09 m³·mol⁻¹ChemAxon
Polarizability48.69 ųChemAxon
Number of Rings4ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
Amino sugar and nucleotide sugar metabolism IIPW000887 ThumbThumb?image type=greyscaleThumb?image type=simple
Amino sugar and nucleotide sugar metabolism IIIPW000895 ThumbThumb?image type=greyscaleThumb?image type=simple
Secondary metabolites: Trehalose Biosynthesis and MetabolismPW000968 ThumbThumb?image type=greyscaleThumb?image type=simple
Starch and sucrose metabolismPW000941 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
4± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-05di-5941580000-aa3b11c510a971dd2baeView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-05be-8925707000-bdd8b43e72abaa64441bView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS ("ADP-glucose,1TMS,#1" TMS) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_8) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_9) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_8) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_9) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_10) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_11) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_12) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_13) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF 32V, positivesplash10-0006-0000290000-7f66f6e8af24e4839d36View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF 30V, positivesplash10-004l-0000950000-739c8280d86a2f6f3b3bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF 32V, negativesplash10-002k-9248080000-875881d0c025c30eb244View in MoNA
LC-MS/MSLC-MS/MS Spectrum - NA , negativesplash10-003r-3900000000-64717800131918b409d1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-000i-1901000000-e41db8583774d0cca66dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-004i-0000940000-0f0b4d7b3da79f054155View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-004i-0000900000-c6a92771658ee7a74bb5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-004i-0401900000-e9c970aa89843c279822View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-0910520000-894488255e0d2059a6caView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0910000000-af7d8977d3d229ea73eeView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900000000-39c6318a5ada8cb3ebb4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001r-1901470000-134113735239a2586876View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-1901000000-48fb3c4c1d3e3f084d3dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0563-3900000000-f9f285dafe2da95e8009View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-000i-0000090000-494b86dfa2b4e6fc0ac1View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0570-5421970000-431fd452ea842be1eb27View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-2922610000-bc7320a1bf5a6bf0dc76View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-0000090000-46811e8e339262e18415View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000l-0841490000-f709931b7e24d70dc4f3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-2921000000-17d11c3948611bf9ff8bView in MoNA
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Baroja-Fernandez E, Etxeberria E, Munoz FJ, Moran-Zorzano MT, Alonso-Casajus N, Gonzalez P, Pozueta-Romero J: An important pool of sucrose linked to starch biosynthesis is taken up by endocytosis in heterotrophic cells. Plant Cell Physiol. 2006 Apr;47(4):447-56. Epub 2006 Jan 24. Pubmed: 16434435
  • Baroja-Fernandez E, Munoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J: Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 2009 Sep;50(9):1651-62. doi: 10.1093/pcp/pcp108. Epub 2009 Jul 16. Pubmed: 19608713
  • Bejar CM, Ballicora MA, Iglesias AA, Preiss J: ADPglucose pyrophosphorylase's N-terminus: structural role in allosteric regulation. Biochem Biophys Res Commun. 2006 Apr 28;343(1):216-21. Epub 2006 Mar 2. Pubmed: 16530732
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Comparot-Moss S, Denyer K: The evolution of the starch biosynthetic pathway in cereals and other grasses. J Exp Bot. 2009;60(9):2481-92. doi: 10.1093/jxb/erp141. Pubmed: 19505928
  • Eydallin G, Moran-Zorzano MT, Munoz FJ, Baroja-Fernandez E, Montero M, Alonso-Casajus N, Viale AM, Pozueta-Romero J: An Escherichia coli mutant producing a truncated inactive form of GlgC synthesizes glycogen: further evidences for the occurrence of various important sources of ADPglucose in enterobacteria. FEBS Lett. 2007 Sep 18;581(23):4417-22. Epub 2007 Aug 15. Pubmed: 17719034
  • Ezquer I, Li J, Ovecka M, Baroja-Fernandez E, Munoz FJ, Montero M, Diaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J: A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis. Plant Signal Behav. 2010 Dec;5(12):1638-41. Epub 2010 Dec 1. Pubmed: 21150257
  • Ezquer I, Li J, Ovecka M, Baroja-Fernandez E, Munoz FJ, Montero M, Diaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J: Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol. 2010 Oct;51(10):1674-93. doi: 10.1093/pcp/pcq126. Epub 2010 Aug 24. Pubmed: 20739303
  • Fettke J, Malinova I, Albrecht T, Hejazi M, Steup M: Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis. Plant Physiol. 2011 Apr;155(4):1723-34. doi: 10.1104/pp.110.168716. Epub 2010 Nov 29. Pubmed: 21115809
  • Haferkamp I: The diverse members of the mitochondrial carrier family in plants. FEBS Lett. 2007 May 25;581(12):2375-9. Epub 2007 Feb 26. Pubmed: 17321523
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Li J, Baroja-Fernandez E, Bahaji A, Munoz FJ, Ovecka M, Montero M, Sesma MT, Alonso-Casajus N, Almagro G, Sanchez-Lopez AM, Hidalgo M, Zamarbide M, Pozueta-Romero J: Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol. 2013 Feb;54(2):282-94. doi: 10.1093/pcp/pcs180. Epub 2013 Jan 3. Pubmed: 23292602
  • Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P, Hajirezaei MR, Stitt M: Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J. 2006 Jul 1;397(1):139-48. Pubmed: 16551270
  • Moran-Zorzano MT, Alonso-Casajus N, Munoz FJ, Viale AM, Baroja-Fernandez E, Eydallin G, Pozueta-Romero J: Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella. FEBS Lett. 2007 Sep 18;581(23):4423-9. Epub 2007 Aug 15. Pubmed: 17719035
  • Nagai YS, Sakulsingharoj C, Edwards GE, Satoh H, Greene TW, Blakeslee B, Okita TW: Control of starch synthesis in cereals: metabolite analysis of transgenic rice expressing an up-regulated cytoplasmic ADP-glucose pyrophosphorylase in developing seeds. Plant Cell Physiol. 2009 Mar;50(3):635-43. doi: 10.1093/pcp/pcp021. Epub 2009 Feb 10. Pubmed: 19208694
  • Smith AM: Prospects for increasing starch and sucrose yields for bioethanol production. Plant J. 2008 May;54(4):546-58. doi: 10.1111/j.1365-313X.2008.03468.x. Pubmed: 18476862
  • Szecowka M, Osorio S, Obata T, Araujo WL, Rohrmann J, Nunes-Nesi A, Fernie AR: Decreasing the mitochondrial synthesis of malate in potato tubers does not affect plastidial starch synthesis, suggesting that the physiological regulation of ADPglucose pyrophosphorylase is context dependent. Plant Physiol. 2012 Dec;160(4):2227-38. doi: 10.1104/pp.112.204826. Epub 2012 Oct 12. Pubmed: 23064409
  • Thorneycroft D, Hosein F, Thangavelu M, Clark J, Vizir I, Burrell MM, Ainsworth C: Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol J. 2003 Jul;1(4):259-70. Pubmed: 17163903
  • Tiessen A, Nerlich A, Faix B, Hummer C, Fox S, Trafford K, Weber H, Weschke W, Geigenberger P: Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method. J Exp Bot. 2012 Mar;63(5):2071-87. doi: 10.1093/jxb/err408. Epub 2011 Dec 26. Pubmed: 22200665
  • Uhlmann NK, Beckles DM: Storage products and transcriptional analysis of the endosperm of cultivated wheat and two wild wheat species. J Appl Genet. 2010;51(4):431-47. doi: 10.1007/BF03208873. Pubmed: 21063061
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Wiedemuth K, Muller J, Kahlau A, Amme S, Mock HP, Grzam A, Hell R, Egle K, Beschow H, Humbeck K: Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. J Plant Physiol. 2005 Nov;162(11):1226-36. Pubmed: 16323274
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference:Tamura, Kiminori; Morozumi, Manami; Yoshino, Hiroshi; Noda, Yutaka; Suzuki, Morio. Nucleotide anhydrides. Ger. Offen. (1972), 16 pp. CODEN: GWXXBX DE 2038262 19720203 CAN 76:99993 AN 1972:99993
Material Safety Data Sheet (MSDS)Not Available
External Links:
ResourceLink
CHEBI ID15751
HMDB IDHMDB06557
Pubchem Compound ID16500
Kegg IDC00498
ChemSpider ID15642
Wikipedia IDNot Available
BioCyc IDADP-D-GLUCOSE
EcoCyc IDADP-D-GLUCOSE
Ligand ExpoADQ

Enzymes

General function:
Involved in biosynthetic process
Specific function:
Synthesizes alpha-1,4-glucan chains using ADP-glucose
Gene Name:
glgA
Uniprot ID:
P0A6U8
Molecular weight:
52822
Reactions
ADP-glucose + (1,4-alpha-D-glucosyl)(n) = ADP + (1,4-alpha-D-glucosyl)(n+1).
General function:
Involved in glycogen biosynthetic process
Specific function:
ATP + alpha-D-glucose 1-phosphate = diphosphate + ADP-glucose
Gene Name:
glgC
Uniprot ID:
P0A6V1
Molecular weight:
48697
Reactions
ATP + alpha-D-glucose 1-phosphate = diphosphate + ADP-glucose.