Record Information
Version2.0
Creation Date2012-05-31 14:04:30 -0600
Update Date2015-09-13 12:56:13 -0600
Secondary Accession Numbers
  • ECMDB04085
Identification
Name:Inosinic acid
DescriptionInosinic acid is a purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. It is formed by the deamination of AMP and when hydrolysed produces inosine. Inosinic acid is the ribonucleotide of hypoxanthine and is the first compound formed during the synthesis of purine. (Wikipedia)
Structure
Thumb
Synonyms:
  • 5'-IMP
  • 5'-Inosinate
  • 5'-Inosine monophosphate
  • 5'-Inosine monophosphoric acid
  • 5'-Inosinic acid
  • IMP
  • Inosinate
  • Inosine 5'-monophosphate
  • Inosine 5'-monophosphoric acid
  • Inosine 5'-phosphate
  • Inosine 5'-phosphoric acid
  • Inosine Monophosphate
  • Inosine monophosphoric acid
  • Inosine-5'-monophosphate
  • Inosine-5'-monophosphoric acid
  • Inosine-5'-phosphate
  • Inosine-5'-phosphoric acid
  • Inosinic acid
  • Ribosylhypoxanthine monophosphate
  • Ribosylhypoxanthine monophosphoric acid
Chemical Formula:C10H13N4O8P
Weight:Average: 348.206
Monoisotopic: 348.047099924
InChI Key:GRSZFWQUAKGDAV-KQYNXXCUSA-N
InChI:InChI=1S/C10H13N4O8P/c15-6-4(1-21-23(18,19)20)22-10(7(6)16)14-3-13-5-8(14)11-2-12-9(5)17/h2-4,6-7,10,15-16H,1H2,(H,11,12,17)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
CAS number:131-99-7
IUPAC Name:{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-oxo-6,9-dihydro-1H-purin-9-yl)oxolan-2-yl]methoxy}phosphonic acid
Traditional IUPAC Name:inosine-5'-monophosphate
SMILES:O[C@@H]1[C@@H](COP(O)(O)=O)O[C@H]([C@@H]1O)N1C=NC2=C1N=CNC2=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine ribonucleotides
Direct ParentPurine ribonucleoside monophosphates
Alternative Parents
Substituents
  • Purine ribonucleoside monophosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • 6-oxopurine
  • Hypoxanthine
  • Monosaccharide phosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Pyrimidone
  • Monoalkyl phosphate
  • Alkyl phosphate
  • Pyrimidine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • N-substituted imidazole
  • Monosaccharide
  • Tetrahydrofuran
  • Vinylogous amide
  • Azole
  • Imidazole
  • Heteroaromatic compound
  • Secondary alcohol
  • 1,2-diol
  • Lactam
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Alcohol
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-2
Melting point:Not Available
Experimental Properties:
PropertyValueSource
LogP:-2.824PhysProp
Predicted Properties
PropertyValueSource
Water Solubility3.05 g/LALOGPS
logP-2ALOGPS
logP-2.9ChemAxon
logS-2.1ALOGPS
pKa (Strongest Acidic)1.31ChemAxon
pKa (Strongest Basic)0.49ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area175.73 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity72.2 m³·mol⁻¹ChemAxon
Polarizability29.14 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
Hypoxanthine + Phosphoribosyl pyrophosphate <> Inosinic acid + Pyrophosphate
Water + Inosinic acid > Inosine + Phosphate
Guanosine monophosphate + 2 Hydrogen ion + NADPH > Inosinic acid + NADP + Ammonium
Adenosine triphosphate + Inosine <> ADP + Hydrogen ion + Inosinic acid
Water + Inosinic acid + NAD <> Hydrogen ion + NADH + Xanthylic acid
Water + Inosine triphosphate > Hydrogen ion + Inosinic acid + Pyrophosphate
Water + Inosinic acid <> Phosphoribosyl formamidocarboxamide
L-Aspartic acid + Guanosine triphosphate + Inosinic acid <> Adenylsuccinic acid + Guanosine diphosphate +2 Hydrogen ion + Phosphate
Inosine triphosphate + Water <> Inosinic acid + Pyrophosphate
Inosinic acid + Water <> Inosine + Phosphate
Adenosine triphosphate + Inosine <> ADP + Inosinic acid
Inosinic acid + Pyrophosphate <> Hypoxanthine + Phosphoribosyl pyrophosphate
Inosinic acid + Ammonia + NADP <> Guanosine monophosphate + NADPH + Hydrogen ion
Guanosine triphosphate + Inosinic acid + L-Aspartic acid <> Guanosine diphosphate + Phosphate + Adenylsuccinic acid
L-Aspartic acid + Inosinic acid + Guanosine triphosphate > Hydrogen ion + adenylo-succinate + Phosphate + Guanosine diphosphate
Ammonia + Inosinic acid + NADP < Hydrogen ion + Guanosine monophosphate + NADPH
Pyrophosphate + Inosinic acid < Phosphoribosyl pyrophosphate + Hypoxanthine
Water + NAD + Inosinic acid > Hydrogen ion + NADH + Xanthylic acid
Inosine + Adenosine triphosphate > Hydrogen ion + Inosinic acid + ADP
Inosinic acid + Ammonia + NADP > Guanosine monophosphate + NADPH
Inosinic acid + Pyrophosphate > Hypoxanthine + Phosphoribosyl pyrophosphate
Inosinic acid + NAD + Water > Xanthylic acid + NADH
Adenosine triphosphate + Inosine > ADP + Inosinic acid
Inosinic acid + Water > Phosphoribosyl formamidocarboxamide
Guanosine triphosphate + Inosinic acid + L-Aspartic acid > Guanosine diphosphate + Inorganic phosphate + N(6)-(1,2-dicarboxyethyl)AMP

SMPDB Pathways:
Aspartate metabolismPW000787 ThumbThumb?image type=greyscaleThumb?image type=simple
adenine and adenosine salvage IPW002069 ThumbThumb?image type=greyscaleThumb?image type=simple
adenine and adenosine salvage IIPW002071 ThumbThumb?image type=greyscaleThumb?image type=simple
purine nucleotides de novo biosynthesisPW000910 ThumbThumb?image type=greyscaleThumb?image type=simple
purine nucleotides de novo biosynthesis 1435709748PW000960 ThumbThumb?image type=greyscaleThumb?image type=simple
purine nucleotides de novo biosynthesis 2PW002033 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
  • adenine and adenosine salvage III PWY-6609
  • adenine and adenosine salvage V PWY-6611
  • adenosine nucleotides de novo biosynthesis PWY-6126
  • guanosine nucleotides de novo biosynthesis PWY-6125
  • inosine-5'-phosphate biosynthesis I PWY-6123
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
113± 0 uMBW2511348 mM Na2HPO4, 22 mM KH2PO4, 10 mM NaCl, 45 mM (NH4)2SO4, supplemented with 1 mM MgSO4, 1 mg/l thiamine·HCl, 5.6 mg/l CaCl2, 8 mg/l FeCl3, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·2H2O and 0.6 mg/l Na2MoO4·2H2O. 4 g/L GlucoStationary Phase, glucose limitedBioreactor, pH controlled, O2 and CO2 controlled, dilution rate: 0.2/h37 oCPMID: 17379776
272± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (5 TMS)splash10-014i-1952000000-fd534f438bc14efb9a2cView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-014i-1952000000-fd534f438bc14efb9a2cView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-014i-0952000000-240bf898db7f932db317View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0002-9703000000-f104482957f10e79ed31View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-01ot-9412200000-ce06d9df7a1b1e9f6bf7View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-0900000000-a46a4af4f25c710c773bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-1900000000-e3960644419fb73668b1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0fb9-2983200000-58dfb3434545241ee7b6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-000i-1900000000-d9a723b143b346290896View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-002b-9203000000-e2ceede282569ac77de5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-002b-9203000000-e2ceede282569ac77de5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-000i-1900000000-d9a723b143b346290896View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-0002-2009000000-fd4ac18ae0dd374e6ff5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-004j-9201000000-349e076b55d7b34813f1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-000i-0900000000-7d260970c5fd63733d68View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900000000-29a9853c167178a536caView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-004i-9200000000-d15c645092c15796fecfView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Positivesplash10-000i-1920000000-cce3d9b2f5486a013f43View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900000000-123dc62f6eec7f2a443aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-000i-1900000000-74854877c4d899dd1cbfView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Positivesplash10-000i-1910000000-92a97d045ff5a88d7fefView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-000i-0900000000-780ab0f4378101c42e44View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-000i-2900000000-ccbd03a9087207ab2a25View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-000i-1900000000-69d1aff415931bcc4325View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-0914000000-12233517e0b50e335442View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0900000000-001099c1a6404d88af4bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-01p9-1900000000-3434d7718750395042e3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-002k-6709000000-382b74c195ae8ed61127View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-002r-8900000000-b96f15a308f90974b444View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9200000000-15137ad005d3cad1a603View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Allison AC, Eugui EM: Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transplant. 1996 Feb;10(1 Pt 2):77-84. Pubmed: 8680053
  • Bangsbo J, Gollnick PD, Graham TE, Juel C, Kiens B, Mizuno M, Saltin B: Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol. 1990 Mar;422:539-59. Pubmed: 2352192
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Castro-Gago M, Cid E, Trabazo S, Pavon P, Camina F, Rodriguez-Segade S, Einis Punal J, Rodriguez-Nunez A: Cerebrospinal fluid purine metabolites and pyrimidine bases after brief febrile convulsions. Epilepsia. 1995 May;36(5):471-4. Pubmed: 7614924
  • Green HJ, Grant SM, Phillips SM, Enns DL, Tarnopolsky MA, Sutton JR: Reduced muscle lactate during prolonged exercise following induced plasma volume expansion. Can J Physiol Pharmacol. 1997 Dec;75(12):1280-6. Pubmed: 9534937
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Klupp J, Pfitzmann R, Langrehr JM, Neuhaus P: Indications of mycophenolate mofetil in liver transplantation. Transplantation. 2005 Sep 27;80(1 Suppl):S142-6. Pubmed: 16286893
  • McCauley TG, Hamaguchi N, Stanton M: Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem. 2003 Aug 15;319(2):244-50. Pubmed: 12871718
  • McConell G, Snow RJ, Proietto J, Hargreaves M: Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol. 1999 Sep;87(3):1083-6. Pubmed: 10484580
  • McConell GK, Canny BJ, Daddo MC, Nance MJ, Snow RJ: Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise. J Appl Physiol. 2000 Nov;89(5):1690-8. Pubmed: 11053315
  • McConell GK, Shinewell J, Stephens TJ, Stathis CG, Canny BJ, Snow RJ: Creatine supplementation reduces muscle inosine monophosphate during endurance exercise in humans. Med Sci Sports Exerc. 2005 Dec;37(12):2054-61. Pubmed: 16331129
  • Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2(1):18. Pubmed: 15882454
  • Pouw EM, Schols AM, van der Vusse GJ, Wouters EF: Elevated inosine monophosphate levels in resting muscle of patients with stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 Feb;157(2):453-7. Pubmed: 9476857
  • Rodriguez-Nunez A, Cid E, Rodriguez-Garcia J, Camina F, Rodriguez-Segade S, Castro-Gago M: Concentrations of nucleotides, nucleosides, purine bases, oxypurines, uric acid, and neuron-specific enolase in the cerebrospinal fluid of children with sepsis. J Child Neurol. 2001 Sep;16(9):704-6. Pubmed: 11575617
  • Rush JW, MacLean DA, Hultman E, Graham TE: Exercise causes branched-chain oxoacid dehydrogenase dephosphorylation but not AMP deaminase binding. J Appl Physiol. 1995 Jun;78(6):2193-200. Pubmed: 7665417
  • Scott GS, Spitsin SV, Kean RB, Mikheeva T, Koprowski H, Hooper DC: Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16303-8. Epub 2002 Nov 25. Pubmed: 12451183
  • Swart PJ, Beljaars E, Smit C, Pasma A, Schuitemaker H, Meijer DK: Comparative pharmacokinetic, immunologic and hematologic studies on the anti-HIV-1/2 compounds aconitylated and succinylated HSA. J Drug Target. 1996;4(2):109-16. Pubmed: 8894971
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • van Hall G, van der Vusse GJ, Soderlund K, Wagenmakers AJ: Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J Physiol. 1995 Nov 15;489 ( Pt 1):251-61. Pubmed: 8583409
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference:Park, Yeong Hun; Cho, Gwang Myeong; Baek, Min Ji; Hong, Guk Gi; Lee, Jin Nam. Method for preparing 5'-inosinic acid by using microbe capable of over-expressing purC gene. Repub. Korea (2007), 7pp.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID17202
HMDB IDHMDB00175
Pubchem Compound ID8582
Kegg IDC00130
ChemSpider ID8264
WikipediaInosinic acid
BioCyc IDIMP
EcoCyc IDIMP
Ligand ExpoIMP

Enzymes

General function:
Involved in hydrolase activity
Specific function:
Degradation of external UDP-glucose to uridine monophosphate and glucose-1-phosphate, which can then be used by the cell
Gene Name:
ushA
Uniprot ID:
P07024
Molecular weight:
60824
Reactions
UDP-sugar + H(2)O = UMP + alpha-D-aldose 1-phosphate.
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in adenylosuccinate synthase activity
Specific function:
Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP
Gene Name:
purA
Uniprot ID:
P0A7D4
Molecular weight:
47345
Reactions
GTP + IMP + L-aspartate = GDP + phosphate + N(6)-(1,2-dicarboxyethyl)-AMP.
General function:
Involved in hydrolase activity
Specific function:
Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'- monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. Also plays a significant physiological role in stress-response and is required for the survival of E.coli in stationary growth phase
Gene Name:
surE
Uniprot ID:
P0A840
Molecular weight:
26900
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
A 3'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
(Polyphosphate)(n) + H(2)O = (polyphosphate)(n-1) + phosphate.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows high phosphatase activity toward three nucleoside 5'-monophosphates, UMP, dUMP, and dTMP, and very low activity against TDP, IMP, UDP, GMP, dGMP, AMP, dAMP, and 6- phosphogluconate. Is strictly specific to substrates with 5'- phosphates and shows no activity against nucleoside 2'- or 3'- monophosphates. Might be involved in the pyrimidine nucleotide substrate cycles
Gene Name:
yjjG
Uniprot ID:
P0A8Y1
Molecular weight:
25300
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in hypoxanthine phosphoribosyltransferase activity
Specific function:
This enzyme acts exclusively on hypoxanthine; it does not act on guanine
Gene Name:
hpt
Uniprot ID:
P0A9M2
Molecular weight:
20115
Reactions
IMP + diphosphate = hypoxanthine + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in nucleoside metabolic process
Specific function:
Acts on guanine, xanthine and to a lesser extent hypoxanthine
Gene Name:
gpt
Uniprot ID:
P0A9M5
Molecular weight:
16971
Reactions
XMP + diphosphate = 5-phospho-alpha-D-ribose 1-diphosphate + xanthine.
General function:
Involved in catalytic activity
Specific function:
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH
Gene Name:
guaB
Uniprot ID:
P0ADG7
Molecular weight:
52022
Reactions
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH.
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Uniprot ID:
P0AE22
Molecular weight:
26103
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
ATP + inosine = ADP + IMP
Gene Name:
gsk
Uniprot ID:
P0AEW6
Molecular weight:
48448
Reactions
ATP + inosine = ADP + IMP.
General function:
Involved in nucleoside-triphosphate diphosphatase activity
Specific function:
Specific function unknown
Gene Name:
mazG
Uniprot ID:
P0AEY3
Molecular weight:
30412
Reactions
ATP + H(2)O = AMP + diphosphate.
General function:
Involved in IMP cyclohydrolase activity
Specific function:
10-formyltetrahydrofolate + 5-amino-1-(5- phospho-D-ribosyl)imidazole-4-carboxamide = tetrahydrofolate + 5- formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
Gene Name:
purH
Uniprot ID:
P15639
Molecular weight:
57329
Reactions
10-formyltetrahydrofolate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide = tetrahydrofolate + 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide.
IMP + H(2)O = 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide.
General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes O6 atom-containing purine bases deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) as well as 2'-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) to nucleotide monophosphate and pyrophosphate. Probably excludes non- standard purines from DNA precursor pool, preventing thus incorporation into DNA and avoiding chromosomal lesions
Gene Name:
rdgB
Uniprot ID:
P52061
Molecular weight:
21039
Reactions
A nucleoside triphosphate + H(2)O = a nucleotide + diphosphate.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides
Gene Name:
guaC
Uniprot ID:
P60560
Molecular weight:
37383
Reactions
Inosine 5'-phosphate + NH(3) + NADP(+) = guanosine 5'-phosphate + NADPH.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows strict specificity toward deoxyribonucleoside 5'-monophosphates and does not dephosphorylate 5'-ribonucleotides or ribonucleoside 3'-monophosphates. Might be involved in the regulation of all dNTP pools in E.coli
Gene Name:
yfbR
Uniprot ID:
P76491
Molecular weight:
22708
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.

Transporters

General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368