Record Information
Version2.0
Creation Date2012-05-31 13:54:28 -0600
Update Date2015-06-03 15:54:12 -0600
Secondary Accession Numbers
  • ECMDB01554
Identification
Name:Xanthylic acid
DescriptionXanthylic acid is an important metabolic intermediate in the purine metabolism, and is a product or substrate of the enzymes inosine monophosphate dehydrogenase (EC 1.1.1.205), hypoxanthine phosphoribosyltransferase (EC 2.4.2.8), xanthine phosphoribosyltransferase (EC 2.4.2.22), 5'-ribonucleotide phosphohydrolase (EC 3.1.3.5), Ap4A hydrolase (EC 3.6.1.17), nucleoside-triphosphate diphosphatase (EC 3.6.1.19), phosphoribosylamine-glycine ligase (EC 6.3.4.1), and glutamine amidotransferase (EC 6.3.5.2). (KEGG)
Structure
Thumb
Synonyms:
  • (9-D-ribosylxanthine)-5'-phosphate
  • (9-D-Ribosylxanthine)-5'-phosphoric acid
  • 5'-Xanthonylate monophosphate
  • 5'-Xanthonylic acid monophosphate
  • 5'-Xanthonylic acid monophosphoric acid
  • 9-(5-phospho-β-D-ribosyl)xanthine
  • 9-(5-phospho-b-D-Ribosyl)xanthine
  • 9-(5-Phospho-beta-D-ribosyl)xanthine
  • 9-(5-phospho-β-D-Ribosyl)xanthine
  • Xanthosine 5'-phosphate
  • Xanthosine 5'-phosphoric acid
  • Xanthosine-5'-P
  • Xanthosine-5'-phosphate
  • Xanthosine-5'-phosphoric acid
  • Xanthosine-5-P
  • Xanthosine-5-phosphate
  • Xanthosine-5-phosphoric acid
  • Xanthylate
  • XMP
Chemical Formula:C10H13N4O9P
Weight:Average: 364.2054
Monoisotopic: 364.042014546
InChI Key:DCTLYFZHFGENCW-UUOKFMHZSA-N
InChI:InChI=1S/C10H13N4O9P/c15-5-3(1-22-24(19,20)21)23-9(6(5)16)14-2-11-4-7(14)12-10(18)13-8(4)17/h2-3,5-6,9,15-16H,1H2,(H2,19,20,21)(H2,12,13,17,18)/t3-,5-,6-,9-/m1/s1
CAS number:523-98-8
IUPAC Name:{[(2R,3S,4R,5R)-5-(2,6-dioxo-2,3,6,9-tetrahydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid
Traditional IUPAC Name:xanthosine monophosphate
SMILES:O[C@@H]1[C@@H](COP(O)(O)=O)O[C@H]([C@@H]1O)N1C=NC2=C1NC(=O)NC2=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine ribonucleotides
Direct ParentPurine ribonucleoside monophosphates
Alternative Parents
Substituents
  • Purine ribonucleoside monophosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • Xanthine
  • 6-oxopurine
  • Monosaccharide phosphate
  • Pentose monosaccharide
  • Purinone
  • Imidazopyrimidine
  • Purine
  • Alkaloid or derivatives
  • Monoalkyl phosphate
  • Pyrimidone
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Alkyl phosphate
  • Phosphoric acid ester
  • Pyrimidine
  • Heteroaromatic compound
  • Azole
  • Vinylogous amide
  • Imidazole
  • Tetrahydrofuran
  • Lactam
  • 1,2-diol
  • Urea
  • Secondary alcohol
  • Azacycle
  • Oxacycle
  • Organoheterocyclic compound
  • Alcohol
  • Organic oxide
  • Organonitrogen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Organooxygen compound
  • Hydrocarbon derivative
  • Organic nitrogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-2
Melting point:Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility2.49 g/LALOGPS
logP-1.9ALOGPS
logP-2.2ChemAxon
logS-2.2ALOGPS
pKa (Strongest Acidic)1.26ChemAxon
pKa (Strongest Basic)0.069ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area192.47 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity73.08 m³·mol⁻¹ChemAxon
Polarizability29.99 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
Water + Xanthylic acid > Phosphate + Xanthosine
Phosphoribosyl pyrophosphate + Xanthine <> Pyrophosphate + Xanthylic acid
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid > Adenosine monophosphate + L-Glutamate + Guanosine monophosphate +2 Hydrogen ion + Pyrophosphate
Water + Inosinic acid + NAD <> Hydrogen ion + NADH + Xanthylic acid
Water + Xanthosine 5-triphosphate > Hydrogen ion + Pyrophosphate + Xanthylic acid
Adenosine triphosphate + Xanthylic acid + Ammonia <> Adenosine monophosphate + Pyrophosphate + Guanosine monophosphate
Adenosine triphosphate + Xanthylic acid + L-Glutamine + Water <> Adenosine monophosphate + Pyrophosphate + Guanosine monophosphate + L-Glutamate
Xanthylic acid + Pyrophosphate <> Xanthine + Phosphoribosyl pyrophosphate
Xanthylic acid + Water <> Xanthosine + Phosphate
Xanthosine 5-triphosphate + Water <> Xanthylic acid + Pyrophosphate
Water + L-Glutamine + Xanthylic acid + Adenosine triphosphate > Hydrogen ion + L-Glutamate + Guanosine monophosphate + Pyrophosphate + Adenosine monophosphate
Adenosine triphosphate + Xanthylic acid + Ammonia > Hydrogen ion + Adenosine monophosphate + Pyrophosphate + Guanosine monophosphate
Water + NAD + Inosinic acid > Hydrogen ion + NADH + Xanthylic acid
Xanthylic acid + Pyrophosphate < Xanthine + Phosphoribosyl pyrophosphate
Adenosine triphosphate + Xanthylic acid + L-Glutamine + Water > Adenosine monophosphate + Pyrophosphate + Guanosine monophosphate + L-Glutamate
Inosinic acid + NAD + Water > Xanthylic acid + NADH
Xanthylic acid + Pyrophosphate > Phosphoribosyl pyrophosphate + Xanthine
Xanthosine 5-triphosphate + Water + 2'-Deoxyinosine triphosphate <> Xanthylic acid + Pyrophosphate + DIMP
Adenosine triphosphate + Xanthylic acid + L-Glutamine + Water + Ammonia <> Adenosine monophosphate + Pyrophosphate + Guanosine monophosphate + L-Glutamate
Xanthylic acid + Adenosine triphosphate + L-Glutamine + Water > Adenosine monophosphate + Pyrophosphate + L-Glutamic acid +2 Hydrogen ion + Guanosine monophosphate + L-Glutamate
Xanthine + Phosphoribosyl pyrophosphate > Xanthylic acid + Pyrophosphate
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid > Adenosine monophosphate + L-Glutamate + Guanosine monophosphate +2 Hydrogen ion + Pyrophosphate
Water + Inosinic acid + NAD <> Hydrogen ion + NADH + Xanthylic acid
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid > Adenosine monophosphate + L-Glutamate + Guanosine monophosphate +2 Hydrogen ion + Pyrophosphate
Water + Inosinic acid + NAD <> Hydrogen ion + NADH + Xanthylic acid
SMPDB Pathways:
purine nucleotides de novo biosynthesisPW000910 ThumbThumb?image type=greyscaleThumb?image type=simple
purine nucleotides de novo biosynthesis 1435709748PW000960 ThumbThumb?image type=greyscaleThumb?image type=simple
purine nucleotides de novo biosynthesis 2PW002033 ThumbThumb?image type=greyscaleThumb?image type=simple
purine ribonucleosides degradationPW002076 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0002-9613000000-3054f73e4c9456039ed6View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-01ot-9521200000-1e6fc3c628d8ebd23b37View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-0ik9-7964000000-bce7ee60221f82790f35View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0002-9400000000-05c1ae772c001a15a8c6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Positivesplash10-0002-9200000000-743d2f19ea30c814c56aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-0002-9210000000-f36c079a2869c6c7c63dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-0002-9300000000-0cea344051256ed9d642View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-0002-9300000000-1295bb6a6dfffef31dd2View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-0002-9400000000-7125a3a52d3308d6b367View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0fb9-9400000000-f93509061523b8f0b012View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-0002-9310000000-a910c200bfc66c8e1c46View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-0002-9000000000-1ff54bb8d71e1ea585f2View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-03fs-9380000000-2a0fbd1929733b4918d1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-03di-1039000000-f0bd4ff644ac79937301View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0913000000-d17f1d77b992fc6e9f04View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udi-0900000000-efbdb918f50ba610575dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0udi-2900000000-cf070bd16aacd3dcb6fbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0imi-6509000000-d931cb1dcaeba678220cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0fbc-9300000000-e596281ec38113a9653cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9100000000-1caa46ecd17db343ddd3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0900000000-ac450658003af6c0a109View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udi-0900000000-448bfe6677d2f8fe1f3cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0udi-1900000000-10c12403e596a9b5bf0aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-3009000000-8a668987618bcd1531e7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-004i-9000000000-4b2bf772bc8415c9f24cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9201000000-907dd40cbb70b7a5c62dView in MoNA
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Albrecht W, Storck M, Pfetsch E, Martin W, Abendroth D: Development and application of a high-performance liquid chromatography-based assay for determination of the activity of inosine 5'-monophosphate dehydrogenase in whole blood and isolated mononuclear cells. Ther Drug Monit. 2000 Jun;22(3):283-94. Pubmed: 10850395
  • Barsotti C, Pesi R, Giannecchini M, Ipata PL: Evidence for the involvement of cytosolic 5'-nucleotidase (cN-II) in the synthesis of guanine nucleotides from xanthosine. J Biol Chem. 2005 Apr 8;280(14):13465-9. Epub 2005 Feb 6. Pubmed: 15699053
  • Daxecker H, Raab M, Muller MM: Influence of mycophenolic acid on inosine 5'-monophosphate dehydrogenase activity in human peripheral blood mononuclear cells. Clin Chim Acta. 2002 Apr;318(1-2):71-7. Pubmed: 11880114
  • Digits JA, Hedstrom L: Drug selectivity is determined by coupling across the NAD+ site of IMP dehydrogenase. Biochemistry. 2000 Feb 22;39(7):1771-7. Pubmed: 10677226
  • Digits JA, Hedstrom L: Species-specific inhibition of inosine 5'-monophosphate dehydrogenase by mycophenolic acid. Biochemistry. 1999 Nov 16;38(46):15388-97. Pubmed: 10563825
  • Franchetti P, Grifantini M: Nucleoside and non-nucleoside IMP dehydrogenase inhibitors as antitumor and antiviral agents. Curr Med Chem. 1999 Jul;6(7):599-614. Pubmed: 10390603
  • Frueh FW, Hayashibara KC, Brown PO, Whitlock JP Jr: Use of cDNA microarrays to analyze dioxin-induced changes in human liver gene expression. Toxicol Lett. 2001 Jul 6;122(3):189-203. Pubmed: 11489354
  • Glander P, Braun KP, Hambach P, Bauer S, Mai I, Roots I, Waiser J, Fritsche L, Neumayer HH, Budde K: Non-radioactive determination of inosine 5'-monophosphate dehydro-genase (IMPDH) in peripheral mononuclear cells. Clin Biochem. 2001 Oct;34(7):543-9. Pubmed: 11738390
  • Hedstrom L: IMP dehydrogenase: mechanism of action and inhibition. Curr Med Chem. 1999 Jul;6(7):545-60. Pubmed: 10390600
  • Heroux A, White EL, Ross LJ, Borhani DW: Crystal structures of the Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase-GMP and -IMP complexes: comparison of purine binding interactions with the XMP complex. Biochemistry. 1999 Nov 2;38(44):14485-94. Pubmed: 10545170
  • Heroux A, White EL, Ross LJ, Davis RL, Borhani DW: Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg(2+) ions bound: insights into the catalytic mechanism. Biochemistry. 1999 Nov 2;38(44):14495-506. Pubmed: 10545171
  • Jayaram HN, Cooney DA, Grusch M, Krupitza G: Consequences of IMP dehydrogenase inhibition, and its relationship to cancer and apoptosis. Curr Med Chem. 1999 Jul;6(7):561-74. Pubmed: 10390601
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Khalil PN, Erb N, Khalil MN, Escherich G, Janka-Schaub GE: Validation and application of a high-performance liquid chromatographic-based assay for determination of the inosine 5'-monophosphate dehydrogenase activity in erythrocytes. J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Sep 14;842(1):1-7. Epub 2006 May 24. Pubmed: 16725387
  • Markland W, McQuaid TJ, Jain J, Kwong AD: Broad-spectrum antiviral activity of the IMP dehydrogenase inhibitor VX-497: a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon. Antimicrob Agents Chemother. 2000 Apr;44(4):859-66. Pubmed: 10722482
  • McMillan FM, Cahoon M, White A, Hedstrom L, Petsko GA, Ringe D: Crystal structure at 2.4 A resolution of Borrelia burgdorferi inosine 5'-monophosphate dehydrogenase: evidence of a substrate-induced hinged-lid motion by loop 6. Biochemistry. 2000 Apr 18;39(15):4533-42. Pubmed: 10758003
  • Minakawa N, Matsuda A: Mechanism-based design of inosine 5-monophosphate dehydrogenase inhibitors: synthesis and biological activities of 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR) and its derivatives. Curr Med Chem. 1999 Jul;6(7):615-28. Pubmed: 10390604
  • Pitera JW, Munagala NR, Wang CC, Kollman PA: Understanding substrate specificity in human and parasite phosphoribosyltransferases through calculation and experiment. Biochemistry. 1999 Aug 10;38(32):10298-306. Pubmed: 10441123
  • Prosise GL, Luecke H: Crystal structures of Tritrichomonasfoetus inosine monophosphate dehydrogenase in complex with substrate, cofactor and analogs: a structural basis for the random-in ordered-out kinetic mechanism. J Mol Biol. 2003 Feb 14;326(2):517-27. Pubmed: 12559919
  • Rauniyar RK, Suzuma K, King AL, Aiello LP, King GL: Differential effects of bactericidal/permeability-increasing protein (BPI) analogues on retinal neovascularization and retinal pericyte growth. Invest Ophthalmol Vis Sci. 2002 Feb;43(2):503-9. Pubmed: 11818397
  • Sintchak MD, Nimmesgern E: The structure of inosine 5'-monophosphate dehydrogenase and the design of novel inhibitors. Immunopharmacology. 2000 May;47(2-3):163-84. Pubmed: 10878288
  • Stoychev G, Kierdaszuk B, Shugar D: Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems. Eur J Biochem. 2002 Aug;269(16):4048-57. Pubmed: 12180982
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vethe NT, Bergan S: Determination of inosine monophosphate dehydrogenase activity in human CD4+ cells isolated from whole blood during mycophenolic acid therapy. Ther Drug Monit. 2006 Oct;28(5):608-13. Pubmed: 17038874
  • Wall M, Shim JH, Benkovic SJ: Human AICAR transformylase: role of the 4-carboxamide of AICAR in binding and catalysis. Biochemistry. 2000 Sep 19;39(37):11303-11. Pubmed: 10985775
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Wolan DW, Cheong CG, Greasley SE, Wilson IA: Structural insights into the human and avian IMP cyclohydrolase mechanism via crystal structures with the bound XMP inhibitor. Biochemistry. 2004 Feb 10;43(5):1171-83. Pubmed: 14756553
Synthesis Reference:Hattori, Kyoji; Kawahara, Shin; Hagiwara, Takeshige. 5'-Xanthylic acid. Jpn. Kokai Tokkyo Koho (1985), 3 pp.
Material Safety Data Sheet (MSDS)Not Available
External Links:
ResourceLink
CHEBI ID15652
HMDB IDHMDB01554
Pubchem Compound ID1190
Kegg IDC00655
ChemSpider ID66054
WikipediaXMP
BioCyc IDXANTHOSINE-5-PHOSPHATE
EcoCyc IDXANTHOSINE-5-PHOSPHATE
Ligand ExpoXMP

Enzymes

General function:
Involved in GMP synthase (glutamine-hydrolyzing) activity
Specific function:
Catalyzes the synthesis of GMP from XMP
Gene Name:
guaA
Uniprot ID:
P04079
Molecular weight:
58679
Reactions
ATP + xanthosine 5'-phosphate + L-glutamine + H(2)O = AMP + diphosphate + GMP + L-glutamate.
General function:
Involved in hydrolase activity
Specific function:
Degradation of external UDP-glucose to uridine monophosphate and glucose-1-phosphate, which can then be used by the cell
Gene Name:
ushA
Uniprot ID:
P07024
Molecular weight:
60824
Reactions
UDP-sugar + H(2)O = UMP + alpha-D-aldose 1-phosphate.
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in hydrolase activity
Specific function:
Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'- monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. Also plays a significant physiological role in stress-response and is required for the survival of E.coli in stationary growth phase
Gene Name:
surE
Uniprot ID:
P0A840
Molecular weight:
26900
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
A 3'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
(Polyphosphate)(n) + H(2)O = (polyphosphate)(n-1) + phosphate.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows high phosphatase activity toward three nucleoside 5'-monophosphates, UMP, dUMP, and dTMP, and very low activity against TDP, IMP, UDP, GMP, dGMP, AMP, dAMP, and 6- phosphogluconate. Is strictly specific to substrates with 5'- phosphates and shows no activity against nucleoside 2'- or 3'- monophosphates. Might be involved in the pyrimidine nucleotide substrate cycles
Gene Name:
yjjG
Uniprot ID:
P0A8Y1
Molecular weight:
25300
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in hypoxanthine phosphoribosyltransferase activity
Specific function:
This enzyme acts exclusively on hypoxanthine; it does not act on guanine
Gene Name:
hpt
Uniprot ID:
P0A9M2
Molecular weight:
20115
Reactions
IMP + diphosphate = hypoxanthine + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in nucleoside metabolic process
Specific function:
Acts on guanine, xanthine and to a lesser extent hypoxanthine
Gene Name:
gpt
Uniprot ID:
P0A9M5
Molecular weight:
16971
Reactions
XMP + diphosphate = 5-phospho-alpha-D-ribose 1-diphosphate + xanthine.
General function:
Involved in catalytic activity
Specific function:
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH
Gene Name:
guaB
Uniprot ID:
P0ADG7
Molecular weight:
52022
Reactions
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH.
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Uniprot ID:
P0AE22
Molecular weight:
26103
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes O6 atom-containing purine bases deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) as well as 2'-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) to nucleotide monophosphate and pyrophosphate. Probably excludes non- standard purines from DNA precursor pool, preventing thus incorporation into DNA and avoiding chromosomal lesions
Gene Name:
rdgB
Uniprot ID:
P52061
Molecular weight:
21039
Reactions
A nucleoside triphosphate + H(2)O = a nucleotide + diphosphate.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows strict specificity toward deoxyribonucleoside 5'-monophosphates and does not dephosphorylate 5'-ribonucleotides or ribonucleoside 3'-monophosphates. Might be involved in the regulation of all dNTP pools in E.coli
Gene Name:
yfbR
Uniprot ID:
P76491
Molecular weight:
22708
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.

Transporters

General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368