Record Information
Version2.0
Creation Date2012-05-31 13:02:50 -0600
Update Date2015-09-13 12:56:09 -0600
Secondary Accession Numbers
  • ECMDB00975
Identification
Name:Trehalose
DescriptionTrehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle.Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase breaks it into two glucose molecules.
Structure
Thumb
Synonyms:
  • α,α-trehalose
  • a,a-Trehalose
  • Alpha,alpha-Trehalose
  • D-Trehalose
  • D-Trehalose-anhydrous
  • Delta-Trehalose-anhydrous
  • α,α-Trehalose
  • δ-Trehalose-anhydrous
Chemical Formula:C12H22O11
Weight:Average: 342.2965
Monoisotopic: 342.116211546
InChI Key:HDTRYLNUVZCQOY-LIZSDCNHSA-N
InChI:InChI=1S/C12H22O11/c13-1-3-5(15)7(17)9(19)11(21-3)23-12-10(20)8(18)6(16)4(2-14)22-12/h3-20H,1-2H2/t3-,4-,5-,6-,7+,8+,9-,10-,11-,12-/m1/s1
CAS number:99-20-7
IUPAC Name:(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol
Traditional IUPAC Name:α,α'-trehalose
SMILES:OC[C@H]1O[C@H](O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@@H](O)[C@@H]1O
Chemical Taxonomy
Description belongs to the class of organic compounds known as o-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentO-glycosyl compounds
Alternative Parents
Substituents
  • O-glycosyl compound
  • Disaccharide
  • Oxane
  • Secondary alcohol
  • Oxacycle
  • Organoheterocyclic compound
  • Polyol
  • Acetal
  • Hydrocarbon derivative
  • Primary alcohol
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:0
Melting point:203 °C
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility592 g/LALOGPS
logP-3ALOGPS
logP-4.7ChemAxon
logS0.24ALOGPS
pKa (Strongest Acidic)11.91ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count11ChemAxon
Hydrogen Donor Count8ChemAxon
Polar Surface Area189.53 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity68.34 m³·mol⁻¹ChemAxon
Polarizability31.14 ųChemAxon
Number of Rings2ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
Starch and sucrose metabolismPW000941 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-0j4m-0932000000-8d7c80edd7f55e92ea29View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-00di-9511000000-b710c7c4bd86fd5f1af0View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-00di-9511000000-2e5f22e6ba282283a569View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-00di-9832000000-b3259de2e25ea7293565View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-0wos-0921000000-68fb82f427417ec703a0View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-0j4m-0943000000-07c11d483e4278dc639aView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-0wmm-0953000000-b74403fa3ce6ce0339ebView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0i04-0932000000-8de0421184ae3291ea53View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (8 TMS)splash10-00di-8932000000-c327fe31b8d3e86dd97dView in MoNA
GC-MSGC-MS Spectrum - GC-MS (8 TMS)splash10-0j4l-0954000000-33e230d28780be607983View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0j4m-0932000000-8d7c80edd7f55e92ea29View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9511000000-b710c7c4bd86fd5f1af0View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9511000000-2e5f22e6ba282283a569View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9832000000-b3259de2e25ea7293565View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0wos-0921000000-68fb82f427417ec703a0View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0j4m-0943000000-07c11d483e4278dc639aView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0wmm-0953000000-b74403fa3ce6ce0339ebView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0i04-0932000000-8de0421184ae3291ea53View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-8932000000-c327fe31b8d3e86dd97dView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0j4l-0954000000-33e230d28780be607983View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0i2d-0921000000-9e633378baf1645df2a1View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-08ni-9554000000-e418bec346785e269084View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (4 TMS) - 70eV, Positivesplash10-014i-2553419000-dd0bea0ade3ee46308dcView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-03di-1901000000-865e9e390fac7d13c2f8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-9500000000-7d4c9de285c2872d2320View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-9000000000-c71f25d08b875caff6b6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-0006-0019000000-3b4e276ff5686c841bddView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-0fdx-8905000000-fafde7828ce0d63fe618View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-0fdx-8905000000-f4b4b3ad528ea3bf43c2View in MoNA
LC-MS/MSLC-MS/MS Spectrum - , negativesplash10-004i-0900000000-d382926500274fb84a46View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , positivesplash10-0udi-0090000000-10524d7a715f8a0ed265View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-0006-0019000000-3b4e276ff5686c841bddView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-9000000000-9ae5587f61124e19e967View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-052r-9400000000-912468a68a25ec147569View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-01t9-0926000000-b1b3f8b4fbacdcc1180fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-0ab9-9200000000-0088f187ae8b6d9b5c2eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0ab9-9200000000-8437afa67780c28771b8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-0006-5809000000-5a5cec80f792fdde61bbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-01q9-0900000000-c4415a0eb58b8c1c5640View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-01t9-0926000000-af9f579519c642acb94fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-000i-9300000000-197e82f358194cd04b3cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-01q9-3593000000-97d3b3b35a65f632fdddView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03ec-0903000000-8981579ae1dd58ba65c9View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03di-1901000000-4c8ec381daa00b88a539View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-03dl-5900000000-89485b49a32afa256bdcView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-002f-4918000000-df3152da1740bcb45d3dView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03mi-3901000000-c9e67703b1ef9ca4f8ccView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-002f-9600000000-b9d2971c377f79dd6238View in MoNA
MSMass Spectrum (Electron Ionization)splash10-022c-9100000000-33d1067ccb0cb2dda51dView in MoNA
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Alcoba-Florez J, Mendez-Alvarez S, Cano J, Guarro J, Perez-Roth E, del Pilar Arevalo M: Phenotypic and molecular characterization of Candida nivariensis sp. nov., a possible new opportunistic fungus. J Clin Microbiol. 2005 Aug;43(8):4107-11. Pubmed: 16081957
  • Alvarez-Peral FJ, Arguelles JC: Changes in external trehalase activity during human serum-induced dimorphic transition in Candida albicans. Res Microbiol. 2000 Dec;151(10):837-43. Pubmed: 11191809
  • Arguelles JC, Rodriguez T, Alvarez-Peral FJ: Trehalose hydrolysis is not required for human serum-induced dimorphic transition in Candida albicans: evidence from a tps1/tps1 mutant deficient in trehalose synthesis. Res Microbiol. 1999 Oct;150(8):521-9. Pubmed: 10577485
  • Berlutti F, Thaller MC, Dainelli B, Pezzi R: T-mod pathway, a reduced sequence for identification of gram-negative urinary tract pathogens. J Clin Microbiol. 1989 Jul;27(7):1646-9. Pubmed: 2768451
  • Chang LL, Shepherd D, Sun J, Ouellette D, Grant KL, Tang XC, Pikal MJ: Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci. 2005 Jul;94(7):1427-44. Pubmed: 15920775
  • Citron DM, Baron EJ, Finegold SM, Goldstein EJ: Short prereduced anaerobically sterilized (PRAS) biochemical scheme for identification of clinical isolates of bile-resistant Bacteroides species. J Clin Microbiol. 1990 Oct;28(10):2220-3. Pubmed: 2229345
  • Corning BF, Murphy JC, Fox JG: Group G streptococcal lymphadenitis in rats. J Clin Microbiol. 1991 Dec;29(12):2720-3. Pubmed: 1757539
  • Davies JE, Sarkar S, Rubinsztein DC: Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet. 2006 Jan 1;15(1):23-31. Epub 2005 Nov 25. Pubmed: 16311254
  • Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M: Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol. 2000 Feb;18(2):163-7. Pubmed: 10657121
  • Fujita Y, Naka T, Doi T, Yano I: Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology. 2005 May;151(Pt 5):1443-52. Pubmed: 15870454
  • Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F: Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol. 2000 Feb;18(2):168-71. Pubmed: 10657122
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Lu FQ, Liu JH, Ouyang XL, Li XJ, Zhou J, Zhuang Y: [Process of human platelets loaded with rehalose before lyophilization] Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006 Feb;14(1):156-61. Pubmed: 16584614
  • Ma X, Jamil K, Macrae TH, Clegg JS, Russell JM, Villeneuve TS, Euloth M, Sun Y, Crowe JH, Tablin F, Oliver AE: A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology. 2005 Aug;51(1):15-28. Pubmed: 15963489
  • Nie Y, de Pablo JJ, Palecek SP: Platelet cryopreservation using a trehalose and phosphate formulation. Biotechnol Bioeng. 2005 Oct 5;92(1):79-90. Pubmed: 15937943
  • Potier M, Dallaire L, Melancon SB: Occurrence and properties of fetal intestinal glycosidases (disaccharidases) in human amniotic fluid. Biol Neonate. 1975;27(3-4):141-52. Pubmed: 241430
  • Sasnoor LM, Kale VP, Limaye LS: A combination of catalase and trehalose as additives to conventional freezing medium results in improved cryoprotection of human hematopoietic cells with reference to in vitro migration and adhesion properties. Transfusion. 2005 Apr;45(4):622-33. Pubmed: 15819685
  • Shirkhanzadeh M: Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose. J Mater Sci Mater Med. 2005 Jan;16(1):37-45. Pubmed: 15754142
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Yoshioka S, Aso Y: A quantitative assessment of the significance of molecular mobility as a determinant for the stability of lyophilized insulin formulations. Pharm Res. 2005 Aug;22(8):1358-64. Epub 2005 Aug 3. Pubmed: 16078146
Synthesis Reference:Murao, Sawao; Nagano, Hiroto; Ogura, Sei; Nishino, Toyokazu. Enzymic synthesis of trehalose from maltose. Agricultural and Biological Chemistry (1985), 49(7), 2113-18.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID16551
HMDB IDHMDB00975
Pubchem Compound ID1143
Kegg IDC01083
ChemSpider ID7149
WikipediaTrehalose
BioCyc IDTREHALOSE
EcoCyc IDTREHALOSE
Ligand ExpoTRE

Enzymes

General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr)
Gene Name:
ptsI
Uniprot ID:
P08839
Molecular weight:
63561
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine.
General function:
Involved in catalytic activity
Specific function:
Provides the cells with the ability to utilize trehalose at high osmolarity by splitting it into glucose molecules that can subsequently be taken up by the phosphotransferase-mediated uptake system
Gene Name:
treA
Uniprot ID:
P13482
Molecular weight:
63636
Reactions
Alpha,alpha-trehalose + H(2)O = 2 D-glucose.
General function:
Involved in catalytic activity
Specific function:
Removes the phosphate from trehalose 6-phosphate to produce free trehalose
Gene Name:
otsB
Uniprot ID:
P31678
Molecular weight:
29175
Reactions
Trehalose 6-phosphate + H(2)O = trehalose + phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport
Gene Name:
treB
Uniprot ID:
P36672
Molecular weight:
51080
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in catalytic activity
Specific function:
Hydrolyzes trehalose to glucose. Could be involved, in cells returning to low osmolarity conditions, in the utilization of the accumulated cytoplasmic trehalose, which was synthesized in response to high osmolarity
Gene Name:
treF
Uniprot ID:
P62601
Molecular weight:
63696
Reactions
Alpha,alpha-trehalose + H(2)O = 2 D-glucose.
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport
Gene Name:
crr
Uniprot ID:
P69783
Molecular weight:
18251
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in catalytic activity
Specific function:
Hydrolyzes the alpha-1,6-glucosidic linkages in glycogen which has first been partially depolymerized by phosphorylase. Shows only very little activity with native glycogen
Gene Name:
glgX
Uniprot ID:
P15067
Molecular weight:
73576
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III)
Gene Name:
ptsH
Uniprot ID:
P0AA04
Molecular weight:
9119
Reactions
Protein HPr N(pi)-phospho-L-histidine + protein EIIA = protein HPr + protein EIIA N(tau)-phospho-L-histidine.

Transporters

General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport
Gene Name:
treB
Uniprot ID:
P36672
Molecular weight:
51080
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transmembrane transport
Specific function:
Involved in the efflux of sugars. The physiological role may be the detoxification of non-metabolizable sugar analogs
Gene Name:
setC
Uniprot ID:
P31436
Molecular weight:
43493
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368