Record Information
Version2.0
Creation Date2012-05-31 10:28:18 -0600
Update Date2015-09-13 12:56:08 -0600
Secondary Accession Numbers
  • ECMDB00657
Identification
Name:Copper
DescriptionCopper is s a ductile metal with very high thermal and electrical conductivity. Pure copper is soft and malleable; a freshly exposed surface has a reddish-orange color. The catalytic activity of copper is used by the enzymes that it is associated with and is thus only toxic when unsequestered and unmediated. Copper(II) ions are water-soluble, where they function at low concentration as bacteriostatic substances, fungicides, and wood preservatives.
Structure
Thumb
Synonyms:
  • Ci(II)
  • Copper
  • Cu
  • Cu++
  • Cu+2
  • Cu++
  • Cu+2
  • Cupric copper
  • Cupric ion
Chemical Formula:Cu
Weight:Average: 63.546
Monoisotopic: 62.929601079
InChI Key:JPVYNHNXODAKFH-UHFFFAOYSA-N
InChI:InChI=1S/Cu/q+2
CAS number:7440-50-8
IUPAC Name:copper(2+) ion
Traditional IUPAC Name:copper(2+) ion
SMILES:[Cu++]
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as homogeneous transition metal compounds. These are inorganic compounds containing only metal atoms,with the largest atom being a transition metal atom.
KingdomInorganic compounds
Super ClassHomogeneous metal compounds
ClassHomogeneous transition metal compounds
Sub ClassNot Available
Direct ParentHomogeneous transition metal compounds
Alternative ParentsNot Available
Substituents
  • Homogeneous transition metal
Molecular FrameworkNot Available
External Descriptors
Physical Properties
State:Solid
Charge:2
Melting point:1083 °C
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
logP0.16ChemAxon
pKa (Strongest Acidic)3.09ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity0 m³·mol⁻¹ChemAxon
Polarizability1.78 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
L-threonine degradation to methylglyoxalPW002106 ThumbThumb?image type=greyscaleThumb?image type=simple
Oxidative phosphorylationPW000919 ThumbThumb?image type=greyscaleThumb?image type=simple
Phenylethylamine metabolismPW002027 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:Not Available
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
4000± 0 uMK-12Not AvailableNot AvailableNot AvailableNot Available1. Cybercell Database: http://ccdb.wishartlab.com/CCDB/cgi-bin/STAT_NEW.cgi
2. Phillips R., Kondev, J., Theriot, J. (2008) “Physical Biology of the Cell” Garland Science, New York, NY.
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03di-9000000000-59c652eccc13cc365f65View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03di-9000000000-59c652eccc13cc365f65View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-03di-9000000000-59c652eccc13cc365f65View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-9000000000-9acd78ab9faeb89677a7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03di-9000000000-9acd78ab9faeb89677a7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-03di-9000000000-9acd78ab9faeb89677a7View in MoNA
References
References:
  • Aoki T: [Genetic disorders of copper transport--diagnosis and new treatment for the patients of Wilson's disease] No To Hattatsu. 2005 Mar;37(2):99-109. Pubmed: 15773321
  • Attri S, Sharma N, Jahagirdar S, Thapa BR, Prasad R: Erythrocyte metabolism and antioxidant status of patients with Wilson disease with hemolytic anemia. Pediatr Res. 2006 Apr;59(4 Pt 1):593-7. Pubmed: 16549536
  • Briviba K, Schnabele K, Rechkemmer G, Bub A: Supplementation of a diet low in carotenoids with tomato or carrot juice does not affect lipid peroxidation in plasma and feces of healthy men. J Nutr. 2004 May;134(5):1081-3. Pubmed: 15113949
  • Cengiz B, Soylemez F, Ozturk E, Cavdar AO: Serum zinc, selenium, copper, and lead levels in women with second-trimester induced abortion resulting from neural tube defects: a preliminary study. Biol Trace Elem Res. 2004 Mar;97(3):225-35. Pubmed: 14997023
  • Chen D, Cui QC, Yang H, Dou QP: Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 2006 Nov 1;66(21):10425-33. Pubmed: 17079463
  • Daniel KG, Harbach RH, Guida WC, Dou QP: Copper storage diseases: Menkes, Wilsons, and cancer. Front Biosci. 2004 Sep 1;9:2652-62. Pubmed: 15358588
  • Dib N, Valsesia E, Malinge MC, Mauras Y, Misrahi M, Cales P: Late onset of Wilson's disease in a family with genetic haemochromatosis. Eur J Gastroenterol Hepatol. 2006 Jan;18(1):43-7. Pubmed: 16357618
  • Gorter RW, Butorac M, Cobian EP: Examination of the cutaneous absorption of copper after the use of copper-containing ointments. Am J Ther. 2004 Nov-Dec;11(6):453-8. Pubmed: 15543084
  • Hoogenraad TU: Paradigm shift in treatment of Wilson's disease: zinc therapy now treatment of choice. Brain Dev. 2006 Apr;28(3):141-6. Epub 2006 Feb 7. Pubmed: 16466879
  • Jablonska-Kaszewska I, Dabrowska E, Drobinska Jurowiecka A, Falkiewicz B: Treatment of Wilson's disease. Med Sci Monit. 2003 Aug;9 Suppl 3:5-8. Pubmed: 15156602
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Kedzierska E: [Concentrations of selected bioelements and toxic metals and their influence on health status of children and youth residing in Szczecin] Ann Acad Med Stetin. 2003;49:131-43. Pubmed: 15552844
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kitzberger R, Madl C, Ferenci P: Wilson disease. Metab Brain Dis. 2005 Dec;20(4):295-302. Pubmed: 16382340
  • Kodama H, Sato E, Gu YH, Shiga K, Fujisawa C, Kozuma T: Effect of copper and diethyldithiocarbamate combination therapy on the macular mouse, an animal model of Menkes disease. J Inherit Metab Dis. 2005;28(6):971-8. Pubmed: 16435190
  • Koury JC, de Olilveria AV Jr, Portella ES, de Olilveria CF, Lopes GC, Donangelo CM: Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities. Int J Sport Nutr Exerc Metab. 2004 Jun;14(3):358-72. Pubmed: 15256695
  • Langner C, Denk H: Wilson disease. Virchows Arch. 2004 Aug;445(2):111-8. Epub 2004 Jun 17. Pubmed: 15205951
  • Meng Y, Miyoshi I, Hirabayashi M, Su M, Mototani Y, Okamura T, Terada K, Ueda M, Enomoto K, Sugiyama T, Kasai N: Restoration of copper metabolism and rescue of hepatic abnormalities in LEC rats, an animal model of Wilson disease, by expression of human ATP7B gene. Biochim Biophys Acta. 2004 Nov 5;1690(3):208-19. Pubmed: 15511628
  • Odland JO, Nieboer E, Romanova N, Thomassen Y: Elements in placenta and pregnancy outcome in arctic and subarctic areas. Int J Circumpolar Health. 2004 May;63(2):169-87. Pubmed: 15253483
  • Pizent A, Jurasovic J, Telisman S: Serum calcium, zinc, and copper in relation to biomarkers of lead and cadmium in men. J Trace Elem Med Biol. 2003;17(3):199-205. Pubmed: 14968933
  • Squitti R, Barbati G, Rossi L, Ventriglia M, Dal Forno G, Cesaretti S, Moffa F, Caridi I, Cassetta E, Pasqualetti P, Calabrese L, Lupoi D, Rossini PM: Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology. 2006 Jul 11;67(1):76-82. Pubmed: 16832081
  • Venelinov TI, Davies IM, Beattie JH: Dialysis-Chelex method for determination of exchangeable copper in human plasma. Anal Bioanal Chem. 2004 Jul;379(5-6):777-80. Epub 2004 Feb 26. Pubmed: 14991216
Synthesis Reference:Not Available
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID30052
HMDB IDHMDB00657
Pubchem Compound ID23978
Kegg IDC00070
ChemSpider ID25221
WikipediaCopper
BioCyc IDCU+2
EcoCyc IDCU+2
Ligand ExpoCU

Enzymes

General function:
Involved in oxidation-reduction process
Specific function:
Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation
Gene Name:
ndh
Uniprot ID:
P00393
Molecular weight:
47358
Reactions
NADH + acceptor = NAD(+) + reduced acceptor.
General function:
Involved in Mo-molybdopterin cofactor biosynthetic process
Specific function:
Involved in sulfur transfer in the conversion of molybdopterin precursor Z to molybdopterin
Gene Name:
moaD
Uniprot ID:
P30748
Molecular weight:
8758
General function:
Involved in Mo-molybdopterin cofactor biosynthetic process
Specific function:
Converts molybdopterin precursor Z to molybdopterin. This requires the incorporation of two sulfur atoms into precursor Z to generate a dithiolene group. The sulfur is provided by moaD
Gene Name:
moaE
Uniprot ID:
P30749
Molecular weight:
16981
Reactions
Cyclic pyranopterin monophosphate + 2 [molybdopterin-synthase sulfur-carrier protein]-Gly-NH-CH(2)-C(O)SH + H(2)O = molybdopterin + 2 [molybdopterin-synthase sulfur-carrier protein].
General function:
Involved in oxidoreductase activity
Specific function:
Probably involved in periplasmic detoxification of copper by oxidizing Cu(+) to Cu(2+) and thus preventing its uptake into the cytoplasm. Possesses phenoloxidase and ferroxidase activities and might be involved in the production of polyphenolic compounds and the prevention of oxidative damage in the periplasm
Gene Name:
cueO
Uniprot ID:
P36649
Molecular weight:
56556
General function:
Involved in nucleotide binding
Specific function:
Involved in export of lead, cadmium, zinc and mercury
Gene Name:
zntA
Uniprot ID:
P37617
Molecular weight:
76839
Reactions
ATP + H(2)O + Cd(2+)(In) = ADP + phosphate + Cd(2+)(Out).
ATP + H(2)O + Zn(2+)(In) = ADP + phosphate + Zn(2+)(Out).
General function:
Involved in nucleotide binding
Specific function:
Involved in copper export. May also be involved in silver export
Gene Name:
copA
Uniprot ID:
Q59385
Molecular weight:
87872
Reactions
ATP + H(2)O + Cu(+)(In) = ADP + phosphate + Cu(+)(Out).
General function:
Involved in Mo-molybdopterin cofactor biosynthetic process
Specific function:
Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP
Gene Name:
moeA
Uniprot ID:
P12281
Molecular weight:
44067
Reactions
Adenylyl-molybdopterin + molybdate = molybdenum cofactor + AMP.

Transporters

General function:
Involved in metal ion transmembrane transporter activity
Specific function:
Mediates zinc uptake. May also transport other divalent cations such as copper and cadmium ions
Gene Name:
zupT
Uniprot ID:
P0A8H3
Molecular weight:
26484
General function:
Involved in transmembrane transport
Specific function:
Part of a cation efflux system that mediates resistance to copper and silver
Gene Name:
cusB
Uniprot ID:
P77239
Molecular weight:
44304
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Part of a cation efflux system that mediates resistance to copper and silver
Gene Name:
cusA
Uniprot ID:
P38054
Molecular weight:
114706
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in copper ion binding
Specific function:
Part of a cation efflux system that mediates resistance to copper and silver. Binds one copper per polypeptide
Gene Name:
cusF
Uniprot ID:
P77214
Molecular weight:
12251
General function:
Involved in transporter activity
Specific function:
Part of a cation efflux system that mediates resistance to copper and silver. In pathogenic strains it allows the bacteria to invade brain microvascular endothelial cells (BMEC) thus allowing it to cross the blood-brain barrier and cause neonatal meningitis
Gene Name:
cusC
Uniprot ID:
P77211
Molecular weight:
50269
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368