Phosphoenolpyruvic acid (ECMDB00263) (M2MDB000111)
Enzymes
- General function:
- Involved in transporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannitol transport
- Gene Name:
- mtlA
- Uniprot ID:
- P00550
- Molecular weight:
- 67972
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in phosphoenolpyruvate carboxylase activity
- Specific function:
- Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle
- Gene Name:
- ppc
- Uniprot ID:
- P00864
- Molecular weight:
- 99062
Reactions
Phosphate + oxaloacetate = H(2)O + phosphoenolpyruvate + HCO(3)(-). |
- General function:
- Involved in catalytic activity
- Specific function:
- Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
- Gene Name:
- aroH
- Uniprot ID:
- P00887
- Molecular weight:
- 38735
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate. |
- General function:
- Involved in catalytic activity
- Specific function:
- Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
- Gene Name:
- aroF
- Uniprot ID:
- P00888
- Molecular weight:
- 38804
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
- Gene Name:
- srlB
- Uniprot ID:
- P05706
- Molecular weight:
- 13304
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- Acts as both a kinase and a phosphatase on BglG
- Gene Name:
- bglF
- Uniprot ID:
- P08722
- Molecular weight:
- 66482
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in transferase activity, transferring phosphorus-containing groups
- Specific function:
- General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr)
- Gene Name:
- ptsI
- Uniprot ID:
- P08839
- Molecular weight:
- 63561
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylglucosamine transport
- Gene Name:
- nagE
- Uniprot ID:
- P09323
- Molecular weight:
- 68346
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in transferase activity, transferring alkyl or aryl (other than methyl) groups
- Specific function:
- Phosphoenolpyruvate + 3-phosphoshikimate = phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate
- Gene Name:
- aroA
- Uniprot ID:
- P0A6D3
- Molecular weight:
- 46095
Reactions
Phosphoenolpyruvate + 3-phosphoshikimate = phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate. |
- General function:
- Involved in magnesium ion binding
- Specific function:
- Catalyzes the reversible conversion of 2- phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. It is also a component of the RNA degradosome, a multi-enzyme complex involved in RNA processing and messenger RNA degradation. Its interaction with RNase E is important for the turnover of mRNA, in particular on transcripts encoding enzymes of energy-generating metabolic routes. Its presence in the degradosome is required for the response to excess phosphosugar. May play a regulatory role in the degradation of specific RNAs, such as ptsG mRNA, therefore linking cellular metabolic status with post-translational gene regulation
- Gene Name:
- eno
- Uniprot ID:
- P0A6P9
- Molecular weight:
- 45655
Reactions
2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O. |
- General function:
- Involved in catalytic activity
- Specific function:
- Synthesis of KDO 8-P which is required for lipid A maturation and cellular growth
- Gene Name:
- kdsA
- Uniprot ID:
- P0A715
- Molecular weight:
- 30833
Reactions
Phosphoenolpyruvate + D-arabinose 5-phosphate + H(2)O = 2-dehydro-3-deoxy-D-octonate 8-phosphate + phosphate. |
- General function:
- Involved in transferase activity, transferring alkyl or aryl (other than methyl) groups
- Specific function:
- Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine. Target for the antibiotic phosphomycin
- Gene Name:
- murA
- Uniprot ID:
- P0A749
- Molecular weight:
- 44817
Reactions
Phosphoenolpyruvate + UDP-N-acetyl-D-glucosamine = phosphate + UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine. |
- General function:
- Involved in catalytic activity
- Specific function:
- Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
- Gene Name:
- aroG
- Uniprot ID:
- P0AB91
- Molecular weight:
- 38009
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate. |
- General function:
- Involved in magnesium ion binding
- Specific function:
- ATP + pyruvate = ADP + phosphoenolpyruvate
- Gene Name:
- pykF
- Uniprot ID:
- P0AD61
- Molecular weight:
- 50729
Reactions
ATP + pyruvate = ADP + phosphoenolpyruvate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- MalX encodes a phosphotransferase system enzyme II that can recognize glucose and maltose as substrates even though these sugars may not represent the natural substrates of the system
- Gene Name:
- malX
- Uniprot ID:
- P19642
- Molecular weight:
- 56627
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in sugar:hydrogen symporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in fructose transport
- Gene Name:
- fruA
- Uniprot ID:
- P20966
- Molecular weight:
- 57519
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in magnesium ion binding
- Specific function:
- ATP + pyruvate = ADP + phosphoenolpyruvate
- Gene Name:
- pykA
- Uniprot ID:
- P21599
- Molecular weight:
- 51357
Reactions
ATP + pyruvate = ADP + phosphoenolpyruvate. |
- General function:
- Involved in phosphoenolpyruvate carboxykinase (ATP) activity
- Specific function:
- ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2)
- Gene Name:
- pckA
- Uniprot ID:
- P22259
- Molecular weight:
- 59643
Reactions
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2). |
- General function:
- Involved in catalytic activity
- Specific function:
- Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate
- Gene Name:
- ppsA
- Uniprot ID:
- P23538
- Molecular weight:
- 87434
Reactions
ATP + pyruvate + H(2)O = AMP + phosphoenolpyruvate + phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in arbutin, cellobiose, and salicin transport
- Gene Name:
- ascF
- Uniprot ID:
- P24241
- Molecular weight:
- 51025
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in transferase activity, transferring phosphorus-containing groups
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane
- Gene Name:
- ptsA
- Uniprot ID:
- P32670
- Molecular weight:
- 91773
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine. |
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport
- Gene Name:
- treB
- Uniprot ID:
- P36672
- Molecular weight:
- 51080
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein binding
- Specific function:
- Component of the phosphoenolpyruvate-dependent nitrogen- metabolic phosphotransferase system (nitrogen-metabolic PTS), that seems to be involved in regulating nitrogen metabolism. Enzyme I- Ntr transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (NPr). Could function in the transcriptional regulation of sigma-54 dependent operons in conjunction with the NPr (ptsO) and EIIA-Ntr (ptsN) proteins
- Gene Name:
- ptsP
- Uniprot ID:
- P37177
- Molecular weight:
- 83715
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine. |
- General function:
- Involved in sugar:hydrogen symporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in galactitol transport
- Gene Name:
- gatB
- Uniprot ID:
- P37188
- Molecular weight:
- 10222
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in transporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane
- Gene Name:
- hrsA
- Uniprot ID:
- P54745
- Molecular weight:
- 69667
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
- Gene Name:
- srlE
- Uniprot ID:
- P56580
- Molecular weight:
- 33332
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in sugar:hydrogen symporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport
- Gene Name:
- crr
- Uniprot ID:
- P69783
- Molecular weight:
- 18251
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport. This enzyme is also a chemoreceptor monitoring the environment for changes in sugar concentration
- Gene Name:
- ptsG
- Uniprot ID:
- P69786
- Molecular weight:
- 50676
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannose transport
- Gene Name:
- manX
- Uniprot ID:
- P69797
- Molecular weight:
- 35047
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in transporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in fructose transport
- Gene Name:
- fruB
- Uniprot ID:
- P69811
- Molecular weight:
- 39647
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
- General function:
- Involved in transporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in ascorbate transport
- Gene Name:
- ulaC
- Uniprot ID:
- P69820
- Molecular weight:
- 17237
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
- General function:
- Involved in sugar:hydrogen symporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in ascorbate transport
- Gene Name:
- ulaB
- Uniprot ID:
- P69822
- Molecular weight:
- 10896
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in transporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in galactitol transport
- Gene Name:
- gatA
- Uniprot ID:
- P69828
- Molecular weight:
- 16907
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylmuramic acid (MurNAc) transport, yielding cytoplasmic MurNAc-6-P. Is responsible for growth on MurNAc as the sole source of carbon and energy. Is also able to take up anhydro-N-acetylmuramic acid (anhMurNAc), but cannot phosphorylate the carbon 6, probably because of the 1,6- anhydro ring
- Gene Name:
- murP
- Uniprot ID:
- P77272
- Molecular weight:
- 49801
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in transferase activity, transferring phosphorus-containing groups
- Specific function:
- Multifunctional protein that includes general (non sugar-specific) and sugar-specific components of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). HPr transfers the phosphoryl group to the phosphoryl carrier EIIA, which then transfers it to EIIB
- Gene Name:
- fryA
- Uniprot ID:
- P77439
- Molecular weight:
- 92129
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine. |
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active- transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in ascorbate transport
- Gene Name:
- ulaA
- Uniprot ID:
- P39301
- Molecular weight:
- 50737
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
- Gene Name:
- srlA
- Uniprot ID:
- P56579
- Molecular weight:
- 20580
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
- Gene Name:
- manY
- Uniprot ID:
- P69801
- Molecular weight:
- 27636
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
- Gene Name:
- manZ
- Uniprot ID:
- P69805
- Molecular weight:
- 31303
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in galactitol transport
- Gene Name:
- gatC
- Uniprot ID:
- P69831
- Molecular weight:
- 48365
- General function:
- Involved in glycerone kinase activity
- Specific function:
- Dihydroxyacetone binding subunit of the dihydroxyacetone kinase, which is responsible for phosphorylating dihydroxyacetone. Binds covalently dihydroxyacetone in hemiaminal linkage. Acts also as a corepressor of dhaR by binding to its sensor domain, in the absence of dihydroxyacetone
- Gene Name:
- dhaK
- Uniprot ID:
- P76015
- Molecular weight:
- 38215
- General function:
- Involved in glycerone kinase activity
- Specific function:
- ADP-binding subunit of the dihydroxyacetone kinase, which is responsible for phosphorylating dihydroxyacetone. DhaL- ADP receives a phosphoryl group from dhaM and transmits it to dihydroxyacetone. DhaL-ADP acts also as a coactivator by binding to the sensor domain of dhaR. DhaL-ATP is inactive
- Gene Name:
- dhaL
- Uniprot ID:
- P76014
- Molecular weight:
- 22632
- General function:
- Involved in transferase activity, transferring phosphorus-containing groups
- Specific function:
- Phosphotransferase subunit of the dihydroxyacetone kinase, which is responsible for phosphorylating dihydroxyacetone. DhaM serves as the phosphoryl donor. It is phosphorylated by HPr, then it donates its phosphoryl group to dhaL-ADP, which eventually transmits it to dihydroxyacetone
- Gene Name:
- dhaM
- Uniprot ID:
- P37349
- Molecular weight:
- 51448
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine. |
Protein HPr N(pi)-phospho-L-histidine + protein EIIA = protein HPr + protein EIIA N(tau)-phospho-L-histidine. |
Protein EIIA N(pi)-phospho-L-histidine + dhaL-ADP = protein EIIA + dhaL-ATP. |
- General function:
- Involved in sugar:hydrogen symporter activity
- Specific function:
- General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III)
- Gene Name:
- ptsH
- Uniprot ID:
- P0AA04
- Molecular weight:
- 9119
Reactions
Protein HPr N(pi)-phospho-L-histidine + protein EIIA = protein HPr + protein EIIA N(tau)-phospho-L-histidine. |
Transporters
- General function:
- Involved in transporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannitol transport
- Gene Name:
- mtlA
- Uniprot ID:
- P00550
- Molecular weight:
- 67972
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- Acts as both a kinase and a phosphatase on BglG
- Gene Name:
- bglF
- Uniprot ID:
- P08722
- Molecular weight:
- 66482
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylglucosamine transport
- Gene Name:
- nagE
- Uniprot ID:
- P09323
- Molecular weight:
- 68346
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine. |
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- MalX encodes a phosphotransferase system enzyme II that can recognize glucose and maltose as substrates even though these sugars may not represent the natural substrates of the system
- Gene Name:
- malX
- Uniprot ID:
- P19642
- Molecular weight:
- 56627
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in sugar:hydrogen symporter activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in fructose transport
- Gene Name:
- fruA
- Uniprot ID:
- P20966
- Molecular weight:
- 57519
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in arbutin, cellobiose, and salicin transport
- Gene Name:
- ascF
- Uniprot ID:
- P24241
- Molecular weight:
- 51025
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport
- Gene Name:
- treB
- Uniprot ID:
- P36672
- Molecular weight:
- 51080
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport. This enzyme is also a chemoreceptor monitoring the environment for changes in sugar concentration
- Gene Name:
- ptsG
- Uniprot ID:
- P69786
- Molecular weight:
- 50676
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylmuramic acid (MurNAc) transport, yielding cytoplasmic MurNAc-6-P. Is responsible for growth on MurNAc as the sole source of carbon and energy. Is also able to take up anhydro-N-acetylmuramic acid (anhMurNAc), but cannot phosphorylate the carbon 6, probably because of the 1,6- anhydro ring
- Gene Name:
- murP
- Uniprot ID:
- P77272
- Molecular weight:
- 49801
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate. |
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active- transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in ascorbate transport
- Gene Name:
- ulaA
- Uniprot ID:
- P39301
- Molecular weight:
- 50737
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
- Gene Name:
- srlA
- Uniprot ID:
- P56579
- Molecular weight:
- 20580
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
- Gene Name:
- manY
- Uniprot ID:
- P69801
- Molecular weight:
- 27636
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
- Gene Name:
- manZ
- Uniprot ID:
- P69805
- Molecular weight:
- 31303
- General function:
- Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
- Specific function:
- The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in galactitol transport
- Gene Name:
- gatC
- Uniprot ID:
- P69831
- Molecular weight:
- 48365