Record Information
Version2.0
Creation Date2012-05-31 10:24:45 -0600
Update Date2015-09-13 12:56:07 -0600
Secondary Accession Numbers
  • ECMDB00244
Identification
Name:Riboflavin
DescriptionRiboflavin, also known as vitamin B2, is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. As such, vitamin B2 is required for a wide variety of cellular processes. Like the other B vitamins, it plays a key role in energy metabolism, and is required for the metabolism of fats, ketone bodies, carbohydrates, and proteins. (Wikipedia)
Structure
Thumb
Synonyms:
  • (-)-Riboflavin
  • 1-Deoxy-1-(3,4-dihydro-7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10(2H)-yl)-D-ribitol
  • 6,7-Dimethyl-9-D-ribitylisoalloxazine
  • 6,7-Dimethyl-9-ribitylisoalloxazine
  • 7,8-Dimethyl-10-(D-ribo-2,3,4,5-tetrahydroxypentyl)-Benzo[g]pteridine-2,4(3H,10H)-dione
  • Beflavin
  • Beflavine
  • Benzo[g]pteridine riboflavin deriv.
  • E 101
  • Flavaxin
  • Flavin BB
  • Flaxain
  • Food Yellow 15
  • Hyre
  • Lactobene
  • Lactoflavin
  • Lactoflavine
  • Ribipca
  • Ribocrisina
  • Riboderm
  • Riboflavine
  • Ribosyn
  • Ribotone
  • Ribovel
  • Russupteridine yellow I
  • Russupteridine yellow III
  • San Yellow B
  • Vitaflavine
  • Vitamin B2
  • Vitamin B2
  • Vitamin G
  • Vitasan B2
Chemical Formula:C17H20N4O6
Weight:Average: 376.3639
Monoisotopic: 376.138284392
InChI Key:AUNGANRZJHBGPY-SCRDCRAPSA-N
InChI:InChI=1S/C17H20N4O6/c1-7-3-9-10(4-8(7)2)21(5-11(23)14(25)12(24)6-22)15-13(18-9)16(26)20-17(27)19-15/h3-4,11-12,14,22-25H,5-6H2,1-2H3,(H,20,26,27)/t11-,12+,14-/m0/s1
CAS number:83-88-5
IUPAC Name:7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione
Traditional IUPAC Name:riboflavin
SMILES:CC1=C(C)C=C2N(C[C@H](O)[C@H](O)[C@H](O)CO)C3=NC(=O)NC(=O)C3=NC2=C1
Chemical Taxonomy
Description belongs to the class of organic compounds known as flavins. Flavins are compounds containing a flavin (7,8-dimethyl-benzo[g]pteridine-2,4-dione) moiety, with a structure characterized by an isoalloaxzine tricyclic ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPteridines and derivatives
Sub ClassAlloxazines and isoalloxazines
Direct ParentFlavins
Alternative Parents
Substituents
  • Flavin
  • Diazanaphthalene
  • Quinoxaline
  • Pyrimidone
  • Pyrazine
  • Pyrimidine
  • Benzenoid
  • Heteroaromatic compound
  • Vinylogous amide
  • Secondary alcohol
  • Lactam
  • Polyol
  • Azacycle
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-1
Melting point:290 °C
Experimental Properties:
PropertyValueSource
Water Solubility:0.0847 mg/mL [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP:-1.46 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility0.66 g/LALOGPS
logP-1.1ALOGPS
logP-0.92ChemAxon
logS-2.8ALOGPS
pKa (Strongest Acidic)5.97ChemAxon
pKa (Strongest Basic)-2.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area155.05 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity96.27 m³·mol⁻¹ChemAxon
Polarizability37.51 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
Hydrogen ion + NADPH + Riboflavin > NADP + Reduced riboflavin
Adenosine triphosphate + Riboflavin <> ADP + Flavin Mononucleotide + Hydrogen ion
2 6,7-Dimethyl-8-(1-D-ribityl)lumazine > 5-Amino-6-ribitylamino uracil + Riboflavin
Hydrogen ion + NADH + Riboflavin > NAD + Reduced riboflavin
2 Ferroxamine + Reduced riboflavin >2 Iron +2 ferroxamine minus Fe(3) +2 Hydrogen ion + Riboflavin
2 6,7-Dimethyl-8-(1-D-ribityl)lumazine <> Riboflavin + 5-Amino-6-ribitylamino uracil
Flavin Mononucleotide + Water <> Riboflavin + Phosphate
Adenosine triphosphate + Riboflavin <> ADP + Flavin Mononucleotide
Reduced riboflavin + NADP < Hydrogen ion + Riboflavin + NADPH
Hydrogen ion + 6,7-Dimethyl-8-(1-D-ribityl)lumazine > 5-amino-6-(D-ribitylamino)uracil + Riboflavin
Riboflavin + Adenosine triphosphate > Hydrogen ion + Flavin Mononucleotide + ADP
Reduced riboflavin + NAD(P)<sup>+</sup> Riboflavin + NAD(P)H + Hydrogen ion
Flavin Mononucleotide + Water > Riboflavin + Phosphate
Reduced riboflavin + NAD(P)(+) > Riboflavin + NAD(P)H
Adenosine triphosphate + Riboflavin > ADP + Flavin Mononucleotide
2 6,7-dimethyl-8-(D-ribityl)lumazine > Riboflavin + 5-amino-6-ribitylamino-2,4(1h,3h)-pyrimidinedione
6,7-Dimethyl-8-(1-D-ribityl)lumazine + Hydrogen ion + 6,7-Dimethyl-8-(1-D-ribityl)lumazine > Riboflavin + 5-Amino-6-ribitylamino uracil + Riboflavin
Riboflavin + Adenosine triphosphate + Riboflavin > Adenosine diphosphate + Hydrogen ion + Flavin Mononucleotide + ADP
Riboflavin + NADPH + 2 Hydrogen ion > Riboflavin reduced + NADP
2 6,7-Dimethyl-8-(1-D-ribityl)lumazine >5 5-Amino-6-ribitylamino uracil + Riboflavin
Adenosine triphosphate + Riboflavin <> ADP + Flavin Mononucleotide + Hydrogen ion
SMPDB Pathways:
Flavin biosynthesisPW001971 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
19± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
22± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glycerolMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
19± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L acetateMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-006x-4980000000-dd278a577316361d270aView in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-006x-4980000000-dd278a577316361d270aView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0btc-9014000000-75f046dc3c6cb008690eView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (4 TMS) - 70eV, Positivesplash10-0zfs-5146149000-f9db57dd1ccd4a014604View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_8) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_9) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_10) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-0a4i-0091000000-a82c54d3153103fcdb1fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-0a4i-0091000000-a82c54d3153103fcdb1fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , negativesplash10-0a4i-0090000000-2aff124ee1fc62c13844View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , negativesplash10-0a4i-0090000000-f8b29c3e2c601a944a6cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , negativesplash10-0a4i-0090000000-4e8c9bd38ea0f5ae9a94View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-0090000000-5288e9226616bb75603cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0093000000-5999e10d04a53f4dae9bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-0091000000-8f391045e25f26d53384View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-08fv-0290000000-b4d5f66b726c01d08c55View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0006-4690000000-d195fd5aee22ece7f2ecView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-004i-0039000000-549fbc0a59262f64680eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0195000000-58354696aaddaffc0fd8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0f76-9231000000-67715e21d6e9ce2655feView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-0a4i-0090000000-838afb0228d293bee0a3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-2190000000-b659be001c9aa265c257View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-0a4i-0090000000-21473bfb7f4a3eafd059View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-004i-0019000000-86365dedafa031aa7787View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0006-4390000000-ac1b59ab7cc2209f4241View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00dj-4900000000-72d33eb27b9bd6a13d9eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-004l-0569000000-874b71fdc78d04853bf0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-qTof , Positivesplash10-004i-0239000000-659ca9fae9643f3ce73dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , positivesplash10-004l-0569000000-874b71fdc78d04853bf0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-0006-0092000000-1f1be5508c1d50d8dff7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-0006-0092000000-74bf0b86efe72fe37198View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Linear Ion Trap , positivesplash10-057i-0069000000-bb0522be4472e049dbc5View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Ajayi OA: Bioavailability of riboflavin from fortified palm juice. Plant Foods Hum Nutr. 1989 Dec;39(4):375-80. Pubmed: 2631092
  • Alexander M, Emanuel G, Golin T, Pinto JT, Rivlin RS: Relation of riboflavin nutriture in healthy elderly to intake of calcium and vitamin supplements: evidence against riboflavin supplementation. Am J Clin Nutr. 1984 Apr;39(4):540-6. Pubmed: 6546833
  • Baeckert PA, Greene HL, Fritz I, Oelberg DG, Adcock EW: Vitamin concentrations in very low birth weight infants given vitamins intravenously in a lipid emulsion: measurement of vitamins A, D, and E and riboflavin. J Pediatr. 1988 Dec;113(6):1057-65. Pubmed: 3142982
  • Bamji MS, Bhaskaram P, Jacob CM: Urinary riboflavin excretion and erythrocyte glutathione reductase activity in preschool children suffering from upper respiratory infections and measles. Ann Nutr Metab. 1987;31(3):191-6. Pubmed: 3592624
  • Bates CJ, Powers HJ: A simple fluorimetric assay for pyridoxamine phosphate oxidase in erythrocyte haemolysates: effects of riboflavin supplementation and of glucose 6-phosphate dehydrogenase deficiency. Hum Nutr Clin Nutr. 1985 Mar;39(2):107-15. Pubmed: 4019261
  • Bates CJ, Prentice AM, Paul AA, Prentice A, Sutcliffe BA, Whitehead RG: Riboflavin status in infants born in rural Gambia, and the effect of a weaning food supplement. Trans R Soc Trop Med Hyg. 1982;76(2):253-8. Pubmed: 7101408
  • Belko AZ, Obarzanek E, Roach R, Rotter M, Urban G, Weinberg S, Roe DA: Effects of aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally deficient young women. Am J Clin Nutr. 1984 Sep;40(3):553-61. Pubmed: 6475825
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Boisvert WA, Mendoza I, Castaneda C, De Portocarrero L, Solomons NW, Gershoff SN, Russell RM: Riboflavin requirement of healthy elderly humans and its relationship to macronutrient composition of the diet. J Nutr. 1993 May;123(5):915-25. Pubmed: 8487103
  • Booth CK, Clark T, Fenn A: Folic acid, riboflavin, thiamine, and vitamin B-6 status of a group of first-time blood donors. Am J Clin Nutr. 1998 Nov;68(5):1075-80. Pubmed: 9808225
  • Brun TA, Chen J, Campbell TC, Boreham J, Feng Z, Parpia B, Shen TF, Li M: Urinary riboflavin excretion after a load test in rural China as a measure of possible riboflavin deficiency. Eur J Clin Nutr. 1990 Mar;44(3):195-206. Pubmed: 2369885
  • Dror Y, Stern F, Komarnitsky M: Optimal and stable conditions for the determination of erythrocyte glutathione reductase activation coefficient to evaluate riboflavin status. Int J Vitam Nutr Res. 1994;64(4):257-62. Pubmed: 7883462
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kodentsova VM, Vrzhesinskaya OA, Spirichev VB: Fluorometric riboflavin titration in plasma by riboflavin-binding apoprotein as a method for vitamin B2 status assessment. Ann Nutr Metab. 1995;39(6):355-60. Pubmed: 8678471
  • Maiani G, Mobarhan S, Nicastro A, Virgili F, Scaccini C, Ferro-Luzzi A: [Determination of glutathione reductase activity in erythrocytes and whole blood as an indicator of riboflavin nutrition] Acta Vitaminol Enzymol. 1983;5(3):171-8. Pubmed: 6650303
  • Mathew JL, Kabi BC, Rath B: Anti-oxidant vitamins and steroid responsive nephrotic syndrome in Indian children. J Paediatr Child Health. 2002 Oct;38(5):450-37. Pubmed: 12354259
  • Mikalunas V, Fitzgerald K, Rubin H, McCarthy R, Craig RM: Abnormal vitamin levels in patients receiving home total parenteral nutrition. J Clin Gastroenterol. 2001 Nov-Dec;33(5):393-6. Pubmed: 11606856
  • Mulherin DM, Thurnham DI, Situnayake RD: Glutathione reductase activity, riboflavin status, and disease activity in rheumatoid arthritis. Ann Rheum Dis. 1996 Nov;55(11):837-40. Pubmed: 8976642
  • Rao PN, Levine E, Myers MO, Prakash V, Watson J, Stolier A, Kopicko JJ, Kissinger P, Raj SG, Raj MH: Elevation of serum riboflavin carrier protein in breast cancer. Cancer Epidemiol Biomarkers Prev. 1999 Nov;8(11):985-90. Pubmed: 10566553
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Switzer BR, Stark AH, Atwood JR, Ritenbaugh C, Travis RG, Wu HM: Development of a urinary riboflavin adherence marker for a wheat bran fiber community intervention trial. Cancer Epidemiol Biomarkers Prev. 1997 Jun;6(6):439-42. Pubmed: 9184778
  • Thurnham DI, Zheng SF, Munoz N, Crespi M, Grassi A, Hambidge KM, Chai TF: Comparison of riboflavin, vitamin A, and zinc status of Chinese populations at high and low risk for esophageal cancer. Nutr Cancer. 1985;7(3):131-43. Pubmed: 3878498
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Zempleni J, Galloway JR, McCormick DB: Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr. 1996 Jan;63(1):54-66. Pubmed: 8604671
  • Zhou X, Huang C, Hong J, Yao S: [Nested case-control study on riboflavin levels in blood and urine and the risk of lung cancer] Wei Sheng Yan Jiu. 2003 Nov;32(6):597-8, 601. Pubmed: 14963913
Synthesis Reference:Tishler, Max; Pfister, Karl, III; Babson, R. D.; Ladenburg, Kurt; Fleming, Ann J. Reaction between o-aminoazo compounds and barbituric acid. A new synthesis of riboflavin. Journal of the American Chemical Society (1947), 69 1487-92.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID17015
HMDB IDHMDB00244
Pubchem Compound ID6759
Kegg IDC00255
ChemSpider ID431981
WikipediaRiboflavin
BioCyc IDRIBOFLAVIN
EcoCyc IDRIBOFLAVIN
Ligand ExpoRBF

Enzymes

General function:
Involved in acid phosphatase activity
Specific function:
A phosphate monoester + H(2)O = an alcohol + phosphate
Gene Name:
appA
Uniprot ID:
P07102
Molecular weight:
47056
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
Myo-inositol hexakisphosphate + H(2)O = 1D-myo-inositol 1,2,3,5,6-pentakisphosphate + phosphate.
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Uniprot ID:
P0AE22
Molecular weight:
26103
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the reduction of soluble flavins by reduced pyridine nucleotides. Seems to reduces the complexed Fe(3+) iron of siderophores to Fe(2+), thus releasing it from the chelator
Gene Name:
fre
Uniprot ID:
P0AEN1
Molecular weight:
26242
Reactions
Reduced riboflavin + NAD(P)(+) = riboflavin + NAD(P)H.
2 cob(II)alamin + NAD(+) = 2 aquacob(III)alamin + NADH.
General function:
Involved in riboflavin synthase activity
Specific function:
Riboflavin synthase is a bifunctional enzyme complex catalyzing the formation of riboflavin from 5-amino-6-(1'-D)- ribityl-amino-2,4(1H,3H)-pyrimidinedione and L-3,4-dihydrohy-2- butanone-4-phosphate via 6,7-dimethyl-8-lumazine. The alpha subunit catalyzes the dismutation of 6,7-dimethyl-8-lumazine to riboflavin and 5-amino-6-(1'-D)-ribityl-amino-2,4(1H,3H)- pyrimidinedione
Gene Name:
ribE
Uniprot ID:
P0AFU8
Molecular weight:
23445
Reactions
2 6,7-dimethyl-8-(1-D-ribityl)lumazine = riboflavin + 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine.
General function:
Involved in FMN adenylyltransferase activity
Specific function:
ATP + riboflavin = ADP + FMN
Gene Name:
ribF
Uniprot ID:
P0AG40
Molecular weight:
34734
Reactions
ATP + riboflavin = ADP + FMN.
ATP + FMN = diphosphate + FAD.
General function:
Involved in sulfite reductase (NADPH) activity
Specific function:
Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L- cysteine from sulfate
Gene Name:
cysI
Uniprot ID:
P17846
Molecular weight:
63998
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O = sulfite + 3 NADPH.
General function:
Involved in sulfite reductase (NADPH) activity
Specific function:
Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L- cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component
Gene Name:
cysJ
Uniprot ID:
P38038
Molecular weight:
66269
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O = sulfite + 3 NADPH.
General function:
Involved in 2 iron, 2 sulfur cluster binding
Specific function:
Involved in the reduction of ferric iron in cytoplasmic ferrioxamine B
Gene Name:
fhuF
Uniprot ID:
P39405
Molecular weight:
30113
General function:
Involved in riboflavin biosynthetic process
Specific function:
Riboflavin synthase is a bifunctional enzyme complex catalyzing the formation of riboflavin from 5-amino-6-(1'-D)- ribityl-amino-2,4(1H,3H)-pyrimidinedione and L-3,4-dihydrohy-2- butanone-4-phosphate via 6,7-dimethyl-8-lumazine. The beta subunit catalyzes the condensation of 5-amino-6-(1'-D)-ribityl-amino- 2,4(1H,3H)-pyrimidinedione with L-3,4-dihydrohy-2-butanone-4- phosphate yielding 6,7-dimethyl-8-lumazine
Gene Name:
ribH
Uniprot ID:
P61714
Molecular weight:
16156
Reactions
2 6,7-dimethyl-8-(1-D-ribityl)lumazine = riboflavin + 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the dephosphorylation of the artificial chromogenic substrate p-nitrophenyl phosphate (pNPP) and of the natural substrates FMN and beta-glucose 1-phosphate
Gene Name:
ybjI
Uniprot ID:
P75809
Molecular weight:
30196