Record Information
Version2.0
Creation Date2012-05-31 13:48:13 -0600
Update Date2015-09-13 12:56:10 -0600
Secondary Accession Numbers
  • ECMDB01248
Identification
Name:FAD
DescriptionFlavine Adenine Dinucleotide (FAD) is a condensation product of riboflavin and adenosine diphosphate. FAD is a redox cofactor involved in several important reactions in metabolism. It can exist in two different redox states, (FAD and FADH2) which it converts between by accepting or donating electrons. It is a coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
Structure
Thumb
Synonyms:
  • 1H-Purin-6-amine flavin dinucleotide
  • 1H-Purin-6-amine flavine dinucleotide
  • Adenine-flavin dinucleotide
  • Adenine-flavine dinucleotide
  • Adenine-riboflavin dinuceotide
  • Adenine-riboflavin dinucleotide
  • Adenine-riboflavine dinucleotide
  • FAD
  • Flamitajin B
  • Flanin F
  • Flavin adenine dinucleotide
  • Flavin adenine dinucleotide oxidized
  • Flavin-adenine dinucleotide
  • Flavine adenosine diphosphate
  • Flavine adenosine diphosphoric acid
  • Flavine-adenine dinucleotide
  • Flavitan
  • Flaziren
  • Isoalloxazine-adenine dinucleotide
  • Riboflavin 5'-adenosine diphosphate
  • Riboflavin 5'-adenosine diphosphoric acid
  • Riboflavin-adenine dinucleotide
  • Riboflavine-adenine dinucleotide
Chemical Formula:C27H33N9O15P2
Weight:Average: 785.5497
Monoisotopic: 785.157134455
InChI Key:VWWQXMAJTJZDQX-UYBVJOGSSA-N
InChI:InChI=1S/C27H33N9O15P2/c1-10-3-12-13(4-11(10)2)35(24-18(32-12)25(42)34-27(43)33-24)5-14(37)19(39)15(38)6-48-52(44,45)51-53(46,47)49-7-16-20(40)21(41)26(50-16)36-9-31-17-22(28)29-8-30-23(17)36/h3-4,8-9,14-16,19-21,26,37-41H,5-7H2,1-2H3,(H,44,45)(H,46,47)(H2,28,29,30)(H,34,42,43)/t14-,15+,16+,19-,20+,21+,26+/m0/s1
CAS number:146-14-5
IUPAC Name:{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid
Traditional IUPAC Name:flavine-adenine dinucleotide
SMILES:CC1=CC2=C(C=C1C)N(C[C@H](O)[C@H](O)[C@H](O)CO[P@](O)(=O)O[P@@](O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)N1C=NC3=C1N=CN=C3N)C1=NC(=O)NC(=O)C1=N2
Chemical Taxonomy
Description belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassFlavin nucleotides
Sub ClassNot Available
Direct ParentFlavin nucleotides
Alternative Parents
Substituents
  • Flavin nucleotide
  • (3'->5')-dinucleotide
  • (3'->5')-dinucleotide or analogue
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Flavin
  • Isoalloxazine
  • Pentose-5-phosphate
  • Pentose phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • Diazanaphthalene
  • Pentose monosaccharide
  • Pteridine
  • 6-aminopurine
  • Quinoxaline
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Pyrimidone
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Imidolactam
  • Benzenoid
  • Alkyl phosphate
  • Phosphoric acid ester
  • Pyrimidine
  • Pyrazine
  • Tetrahydrofuran
  • Azole
  • Vinylogous amide
  • Heteroaromatic compound
  • Imidazole
  • Secondary alcohol
  • Lactam
  • Polyol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Organic oxide
  • Organic oxygen compound
  • Organopnictogen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Primary amine
  • Alcohol
  • Amine
  • Organic nitrogen compound
  • Organooxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-3
Melting point:Not Available
Experimental Properties:
PropertyValueSource
Water Solubility:5 mg/mL [HMP experimental]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility4.25 g/LALOGPS
logP-0.78ALOGPS
logP-4.7ChemAxon
logS-2.3ALOGPS
pKa (Strongest Acidic)1.85ChemAxon
pKa (Strongest Basic)4.01ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count19ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area356.42 ŲChemAxon
Rotatable Bond Count13ChemAxon
Refractivity177.43 m³·mol⁻¹ChemAxon
Polarizability70.53 ųChemAxon
Number of Rings6ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
FADH2 + 2 Hydrogen ion + SufBCD with two bound [2Fe-2S] clusters > FAD + SufBCD with bound [4Fe-4S] cluster
FAD + Hydrogen ion + NADPH > FADH2 + NADP
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD scaffold complex + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with bound [2Fe-2S] cluster +2 SufSE sulfur acceptor complex
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD with bound [2Fe-2S] cluster + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with two bound [2Fe-2S] clusters +2 SufSE sulfur acceptor complex
FADH2 + 2 Iron + 2 IscS with bound sulfur + IscU scaffold protein > FAD +6 Hydrogen ion +2 IscS sulfur acceptor protein + IscU with bound [2Fe-2S] cluster
FADH2 + 2 Iron + 2 IscS with bound sulfur + IscU with bound [2Fe-2S] cluster > FAD +6 Hydrogen ion +2 IscS sulfur acceptor protein + IscU with two bound [2Fe-2S] clusters
Adenosine triphosphate + Flavin Mononucleotide + Hydrogen ion > FAD + Pyrophosphate
Butyryl-CoA + FAD <> Crotonoyl-CoA + FADH2
FAD + Octanoyl-CoA <> FADH2 + (2E)-Octenoyl-CoA
FAD + Palmityl-CoA <> FADH2 + (2E)-Hexadecenoyl-CoA
FAD + Tetradecanoyl-CoA <> FADH2 + (2E)-Tetradecenoyl-CoA
FAD + Hexanoyl-CoA <> FADH2 + trans-2-Hexenoyl-CoA
FAD + Stearoyl-CoA <> FADH2 + Trans-Octadec-2-enoyl-CoA
Lauroyl-CoA + FAD <> (2E)-Dodecenoyl-CoA + FADH2
Decanoyl-CoA (N-C10:0CoA) + FAD <> (2E)-Decenoyl-CoA + FADH2
FAD + L-Proline > L-D-1-Pyrroline-5-carboxylic acid + FADH2 + Hydrogen ion
D-Alanine + FAD + Water > FADH2 + Ammonium + Pyruvic acid
FADH2 + 2 Hydrogen ion + IscU with two bound [2Fe-2S] clusters > FAD + IscU with bound [4Fe-4S] cluster
FADH2 + 2 Fe3+ > FAD +2 Iron +2 Hydrogen ion
FAD + Hydrogen ion + NADH > FADH2 + NAD
FADH2 + 2 Ferroxamine > FAD +2 Iron +2 ferroxamine minus Fe(3) +2 Hydrogen ion
Adenosine triphosphate + Flavin Mononucleotide <> Pyrophosphate + FAD
Succinic acid + FAD <> FADH2 + Fumaric acid
Glycerol 3-phosphate + FAD <> Dihydroxyacetone phosphate + FADH2
Butanoyl-CoA + FAD <> FADH2 + Crotonoyl-CoA

SMPDB Pathways:
Flavin biosynthesisPW001971 ThumbThumb?image type=greyscaleThumb?image type=simple
Nitrogen metabolismPW000755 ThumbThumb?image type=greyscaleThumb?image type=simple
Oxidative phosphorylationPW000919 ThumbThumb?image type=greyscaleThumb?image type=simple
Secondary metabolites: isoprenoid biosynthesis (nonmevalonate pathway)PW000975 ThumbThumb?image type=greyscaleThumb?image type=simple
Secondary metabolites: methylerythritol phosphate and polyisoprenoid biosynthesisPW000958 ThumbThumb?image type=greyscaleThumb?image type=simple
Sulfur metabolismPW000922 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cyclePW000779 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-0)PW002023 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-10)PW001010 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-2)PW001002 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-3)PW001003 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-4)PW001004 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-5)PW001005 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-6)PW001006 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-7)PW001007 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-8)PW001008 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-9)PW001009 ThumbThumb?image type=greyscaleThumb?image type=simple
pyruvate to cytochrome bd terminal oxidase electron transferPW002087 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
60± 2 uMK120.2 g/L NH4Cl, 2.0 g/L (NH4)2SO4, 3.25 g/L KH2PO4, 2.5 g/L K2HPO4, 1.5 g/L NaH2PO4, 0.5 g/L MgSO4; trace substances: 10 mg/L CaCl2, 0.5 mg/L ZnSO4, 0.25 mg/L CuCl2, 0.25 mg/L MnSO4, 0.175 mg/L CoCl2, 0.125 mg/L H3BO3, 2.5 mg/L AlCl3, 0.5 mg/L Na2MoO4, 10Stationary Phase, glucose limitedBioreactor, pH controlled, aerated, dilution rate=0.125 L/h37 oCPMID: 11488613
173± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
209± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glycerolMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
49± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L acetateMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0170-1032960400-cdd3286ebb1dea7c4f54View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_8) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_9) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_7) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_8) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_9) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-0001200900-b0740b3d33d50996ccdeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000m-0105900000-3abff26d5bb35f8527b8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-000i-0931700000-73f360589a13230eea7aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000j-0908600300-b1eccda8ebae8b9e4cc1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-0900000000-bdb826f9c3cbc09eff9bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00di-0019800000-00ad56b6b6a3bb4516e6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000b-0009400000-667064ca470a5c341974View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000j-0509700500-8766cb874f927ed5a795View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-0900000000-3125e04c09a14c62f22aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00di-0019700000-78c46ea4b4f562757e56View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000b-0009400000-94b845d2c8d082b9484cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000100900-6bac7b7f631dfc074a0cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0920000000-49c9d4fb9b57a59f45a5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-572f0b1bd59f71ab3c5fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-d2ede6a2e7183f1c32a3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0000100900-78554afbc26abe26af35View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0930000000-274da0a01c651b791733View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-55939cda9e14fc582757View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-000i-0003900000-db784762434fac3d351fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-0932110400-f05626487523221c34deView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0930000000-86c3d6490bc3a27e053aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052r-0980000000-58a46c839e0e520474d7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0006-8482400900-2c4839849821d2807c57View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001l-5920100000-b38889aa3d09576e2f3eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a7l-3900000000-f7144f6355fab252a516View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Becker K, Wilkinson AR: Flavin adenine dinucleotide levels in erythrocytes of very low birthweight infants under vitamin supplementation. Biol Neonate. 1993;63(2):80-5. Pubmed: 8448258
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Buchholz, A., Takors, R., Wandrey, C. (2001). "Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques." Anal Biochem 295:129-137. Pubmed: 11488613
  • Cimino JA, Jhangiani S, Schwartz E, Cooperman JM: Riboflavin metabolism in the hypothyroid human adult. Proc Soc Exp Biol Med. 1987 Feb;184(2):151-3. Pubmed: 3809170
  • Cimino JA, Noto RA, Fusco CL, Cooperman JM: Riboflavin metabolism in the hypothyroid newborn. Am J Clin Nutr. 1988 Mar;47(3):481-3. Pubmed: 3348160
  • Flatz G, Simmersbach F: Flavin adenine dinucleotide concentration in erythrocytes with normal and deficient glucose-6-phosphate dehydrogenase. Klin Wochenschr. 1970 Sep 1;48(17):1071-2. Pubmed: 5523465
  • Gianazza E, Vergani L, Wait R, Brizio C, Brambilla D, Begum S, Giancaspero TA, Conserva F, Eberini I, Bufano D, Angelini C, Pegoraro E, Tramontano A, Barile M: Coordinated and reversible reduction of enzymes involved in terminal oxidative metabolism in skeletal muscle mitochondria from a riboflavin-responsive, multiple acyl-CoA dehydrogenase deficiency patient. Electrophoresis. 2006 Mar;27(5-6):1182-98. Pubmed: 16470778
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kodentsova VM, Vrzhesinskaia OA, Alekseeva IA, Spirichev VB: [Comparison of biochemical criteria for supplying the human body with riboflavin] Vopr Med Khim. 1991 Sep-Oct;37(5):76-9. Pubmed: 1759408
  • Lisowsky T, Lee JE, Polimeno L, Francavilla A, Hofhaus G: Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase. Dig Liver Dis. 2001 Mar;33(2):173-80. Pubmed: 11346147
  • Lopez-Anaya A, Mayersohn M: Quantification of riboflavin, riboflavin 5'-phosphate and flavin adenine dinucleotide in plasma and urine by high-performance liquid chromatography. J Chromatogr. 1987 Dec 25;423:105-13. Pubmed: 3443641
  • Mohrenweiser HW, Novotny JE: ACP1GUA-1--a low-activity variant of human erythrocyte acid phosphatase: association with increased glutathione reductase activity. Am J Hum Genet. 1982 May;34(3):425-33. Pubmed: 7081221
  • Van Binsbergen CJ, Odink J, Van den Berg H, Koppeschaar H, Coelingh Bennink HJ: Nutritional status in anorexia nervosa: clinical chemistry, vitamins, iron and zinc. Eur J Clin Nutr. 1988 Nov;42(11):929-37. Pubmed: 3074921
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Zempleni J: Determination of riboflavin and flavocoenzymes in human blood plasma by high-performance liquid chromatography. Ann Nutr Metab. 1995;39(4):224-6. Pubmed: 8546438
Synthesis Reference:Not Available
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID16238
HMDB IDHMDB01248
Pubchem Compound ID439154
Kegg IDC00016
ChemSpider ID559059
WikipediaFAD
BioCyc IDFAD
EcoCyc IDFAD
Ligand ExpoFAE

Enzymes

General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
frdA
Uniprot ID:
P00363
Molecular weight:
65971
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhB
Uniprot ID:
P07014
Molecular weight:
26770
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
Oxidizes proline to glutamate for use as a carbon and nitrogen source and also function as a transcriptional repressor of the put operon
Gene Name:
putA
Uniprot ID:
P09546
Molecular weight:
143814
Reactions
L-proline + acceptor = (S)-1-pyrroline-5-carboxylate + reduced acceptor.
(S)-1-pyrroline-5-carboxylate + NAD(P)(+) + 2 H(2)O = L-glutamate + NAD(P)H.
General function:
Involved in metabolic process
Specific function:
Catalyzes the removal of elemental sulfur and selenium atoms from cysteine and selenocysteine to produce alanine. Functions as a sulfur delivery protein for NAD, biotin and Fe-S cluster synthesis. Transfers sulfur on 'Cys-456' of thiI in a transpersulfidation reaction. Transfers sulfur on 'Cys-19' of tusA in a transpersulfidation reaction. Functions also as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate
Gene Name:
iscS
Uniprot ID:
P0A6B7
Molecular weight:
45089
Reactions
L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor.
General function:
Involved in D-amino-acid dehydrogenase activity
Specific function:
Oxidative deamination of D-amino acids
Gene Name:
dadA
Uniprot ID:
P0A6J5
Molecular weight:
47607
Reactions
A D-amino acid + H(2)O + acceptor = a 2-oxo acid + NH(3) + reduced acceptor.
General function:
Energy production and conversion
Specific function:
Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane
Gene Name:
frdC
Uniprot ID:
P0A8Q0
Molecular weight:
15015
General function:
Involved in fumarate metabolic process
Specific function:
Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane
Gene Name:
frdD
Uniprot ID:
P0A8Q3
Molecular weight:
13107
General function:
Involved in iron-sulfur cluster binding
Specific function:
Electron transfer protein; may also function as the membrane anchor for the glpAB dimer
Gene Name:
glpC
Uniprot ID:
P0A996
Molecular weight:
44108
General function:
Involved in oxidoreductase activity
Specific function:
Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor
Gene Name:
glpA
Uniprot ID:
P0A9C0
Molecular weight:
58958
Reactions
sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol.
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhA
Uniprot ID:
P0AC41
Molecular weight:
64421
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhD
Uniprot ID:
P0AC44
Molecular weight:
12867
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
frdB
Uniprot ID:
P0AC47
Molecular weight:
27123
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the reduction of soluble flavins by reduced pyridine nucleotides. Seems to reduces the complexed Fe(3+) iron of siderophores to Fe(2+), thus releasing it from the chelator
Gene Name:
fre
Uniprot ID:
P0AEN1
Molecular weight:
26242
Reactions
Reduced riboflavin + NAD(P)(+) = riboflavin + NAD(P)H.
2 cob(II)alamin + NAD(+) = 2 aquacob(III)alamin + NADH.
General function:
Involved in FMN adenylyltransferase activity
Specific function:
ATP + riboflavin = ADP + FMN
Gene Name:
ribF
Uniprot ID:
P0AG40
Molecular weight:
34734
Reactions
ATP + riboflavin = ADP + FMN.
ATP + FMN = diphosphate + FAD.
General function:
Involved in electron carrier activity
Specific function:
Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor
Gene Name:
glpB
Uniprot ID:
P13033
Molecular weight:
45357
Reactions
sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol.
General function:
Involved in oxidoreductase activity
Specific function:
Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses molecular oxygen or nitrate as electron acceptor
Gene Name:
glpD
Uniprot ID:
P13035
Molecular weight:
56750
Reactions
sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol.
General function:
Involved in sulfite reductase (NADPH) activity
Specific function:
Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L- cysteine from sulfate
Gene Name:
cysI
Uniprot ID:
P17846
Molecular weight:
63998
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O = sulfite + 3 NADPH.
General function:
Involved in malate dehydrogenase (quinone) activity
Specific function:
(S)-malate + a quinone = oxaloacetate + reduced quinone
Gene Name:
mqo
Uniprot ID:
P33940
Molecular weight:
60229
Reactions
(S)-malate + a quinone = oxaloacetate + reduced quinone.
General function:
Involved in sulfite reductase (NADPH) activity
Specific function:
Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L- cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component
Gene Name:
cysJ
Uniprot ID:
P38038
Molecular weight:
66269
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O = sulfite + 3 NADPH.
General function:
Involved in 2 iron, 2 sulfur cluster binding
Specific function:
Involved in the reduction of ferric iron in cytoplasmic ferrioxamine B
Gene Name:
fhuF
Uniprot ID:
P39405
Molecular weight:
30113
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhC
Uniprot ID:
P69054
Molecular weight:
14299
General function:
Involved in metabolic process
Specific function:
Cysteine desulfurases mobilize the sulfur from L- cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo
Gene Name:
sufS
Uniprot ID:
P77444
Molecular weight:
44433
Reactions
L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor.
L-selenocysteine + reduced acceptor = selenide + L-alanine + acceptor.
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the dehydrogenation of acyl-CoA
Gene Name:
fadE
Uniprot ID:
Q47146
Molecular weight:
89224
Reactions
An acyl-CoA + FAD = a dehydrogenated acyl-CoA + FADH(2).
General function:
Involved in nucleotide binding
Specific function:
Has low ATPase activity. The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation
Gene Name:
sufC
Uniprot ID:
P77499
Molecular weight:
27582
General function:
Involved in iron-sulfur cluster assembly
Specific function:
The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation
Gene Name:
sufB
Uniprot ID:
P77522
Molecular weight:
54745
General function:
Inorganic ion transport and metabolism
Specific function:
Specific function unknown
Gene Name:
cyaY
Uniprot ID:
P27838
Molecular weight:
12231
General function:
Involved in iron ion binding
Specific function:
May be involved in the formation or repair of [Fe-S] clusters present in iron-sulfur proteins (Potential)
Gene Name:
nifU
Uniprot ID:
P0ACD4
Molecular weight:
13848
General function:
Not Available
Specific function:
Participates in cysteine desulfuration mediated by sufS. Cysteine desulfuration mobilizes sulfur from L-cysteine to yield L-alanine and constitutes an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Functions as a sulfur acceptor for sufS, by mediating the direct transfer of the sulfur atom from the S-sulfanylcysteine of sufS, an intermediate product of cysteine desulfuration process. Together with the sufBCD complex, it thereby enhances up to 50- fold, the cysteine desulfurase activity of sufS. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Does not affect the selenocysteine lyase activity of sufS
Gene Name:
sufE
Uniprot ID:
P76194
Molecular weight:
15800
General function:
Involved in iron-sulfur cluster assembly
Specific function:
The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the fhuF protein
Gene Name:
sufD
Uniprot ID:
P77689
Molecular weight:
46822

Transporters

General function:
Involved in nucleotide binding
Specific function:
Has low ATPase activity. The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation
Gene Name:
sufC
Uniprot ID:
P77499
Molecular weight:
27582