Record Information
Version2.0
Creation Date2012-05-31 10:24:07 -0600
Update Date2015-06-03 15:53:24 -0600
Secondary Accession Numbers
  • ECMDB00223
Identification
Name:Oxalacetic acid
DescriptionOxaloacetic acid, also known as oxosuccinic acid or oxalacetic acid, is a four-carbon dicarboxylic acid appearing as an intermediate of the citric acid cycle. In vivo, oxaloacetate (the ionized form of oxaloacetic acid) is formed by the oxidation of L-malate, catalyzed by malate dehydrogenase, and reacts with Acetyl-CoA to form citrate, catalyzed by citrate synthase.(wikipedia) A class of ketodicarboxylic acids derived from oxalic acid. Oxaloacetic acid is an intermediate in the citric acid cycle and is converted to aspartic acidD by a transamination reaction.
Structure
Thumb
Synonyms:
  • 2-Ketosuccinate
  • 2-Ketosuccinic acid
  • 2-Oxobutanedioate
  • 2-Oxobutanedioic acid
  • 2-Oxosuccinate
  • 2-Oxosuccinic acid
  • A-Ketosuccinate
  • A-Ketosuccinic acid
  • Alpha-Ketosuccinate
  • Alpha-Ketosuccinic acid
  • Keto-oxaloacetate
  • Keto-oxaloacetic acid
  • Ketosuccinate
  • Ketosuccinic acid
  • OAA
  • Oxalacetate
  • Oxalacetic acid
  • Oxaloacetate
  • Oxaloacetic acid
  • Oxaloethanoate
  • Oxaloethanoic acid
  • Oxosuccinate
  • Oxosuccinic acid
  • α-Ketosuccinate
  • α-Ketosuccinic acid
Chemical Formula:C4H4O5
Weight:Average: 132.0716
Monoisotopic: 132.005873238
InChI Key:KHPXUQMNIQBQEV-UHFFFAOYSA-N
InChI:InChI=1S/C4H4O5/c5-2(4(8)9)1-3(6)7/h1H2,(H,6,7)(H,8,9)
CAS number:328-42-7
IUPAC Name:2-oxobutanedioic acid
Traditional IUPAC Name:oxalacetate
SMILES:OC(=O)CC(=O)C(O)=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassKeto acids and derivatives
Sub ClassShort-chain keto acids and derivatives
Direct ParentShort-chain keto acids and derivatives
Alternative Parents
Substituents
  • Beta-keto acid
  • Short-chain keto acid
  • Alpha-keto acid
  • Beta-hydroxy ketone
  • Dicarboxylic acid or derivatives
  • 1,3-dicarbonyl compound
  • Alpha-hydroxy ketone
  • Ketone
  • Carboxylic acid
  • Carboxylic acid derivative
  • Carbonyl group
  • Organooxygen compound
  • Organic oxide
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-2
Melting point:161 °C
Experimental Properties:
PropertyValueSource
Water Solubility:134 mg/mL [HMP experimental]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility57.1 g/LALOGPS
logP-0.68ALOGPS
logP-0.042ChemAxon
logS-0.36ALOGPS
pKa (Strongest Acidic)2.41ChemAxon
pKa (Strongest Basic)-9.9ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area91.67 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity24.33 m³·mol⁻¹ChemAxon
Polarizability10.06 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
Citric acid <> Acetic acid + Oxalacetic acid
Tartaric acid <> Water + Oxalacetic acid
Water + Oxalacetic acid + Propionyl-CoA <> Methylcitric acid + Coenzyme A + Hydrogen ion + (2S,3S)-2-hydroxybutane-1,2,3-tricarboxylate
Acetyl-CoA + Water + Oxalacetic acid <> Citric acid + Coenzyme A + Hydrogen ion
alpha-Ketoglutarate + L-Aspartic acid <> L-Glutamate + Oxalacetic acid
Hydrogen ion + Oxalacetic acid > Carbon dioxide + Pyruvic acid
L-Malic acid + Ubiquinone-8 > Oxalacetic acid + Ubiquinol-8
L-Malic acid + Menaquinone 8 > Menaquinol 8 + Oxalacetic acid
L-Malic acid + NAD <> Hydrogen ion + NADH + Oxalacetic acid
Adenosine triphosphate + Oxalacetic acid <> ADP + Carbon dioxide + Phosphoenolpyruvic acid
Carbon dioxide + Water + Phosphoenolpyruvic acid <> Hydrogen ion + Oxalacetic acid + Phosphate + Hydrogen carbonate
D-tartrate > Water + Oxalacetic acid
Phosphate + Oxalacetic acid <> Water + Phosphoenolpyruvic acid + Carbon dioxide
Citric acid + Coenzyme A <> Acetyl-CoA + Water + Oxalacetic acid
L-Aspartic acid + Water + Oxygen <> Oxalacetic acid + Ammonia + Hydrogen peroxide
Methylcitric acid + Coenzyme A <> Propionyl-CoA + Oxalacetic acid + Water
L-Malic acid + FAD <> FADH2 + Oxalacetic acid
Oxalacetic acid + L-Arogenate <> L-Aspartic acid + Prephenate
Oxalacetic acid + Water + Propionyl-CoA <> Hydrogen ion + Methylcitric acid + Coenzyme A
L-Aspartic acid + Oxoglutaric acid <> Oxalacetic acid + L-Glutamate
Citric acid > Acetic acid + Oxalacetic acid
D-tartrate Water + Oxalacetic acid
L-Malic acid + a quinone > Oxalacetic acid + a quinol
L-Malic acid + Oxygen <> Oxalacetic acid + Hydrogen peroxide
Oxalacetic acid enol-oxaloacetate
Phosphate + Oxalacetic acid <> Phosphoenolpyruvic acid + Hydrogen carbonate
Oxalacetic acid + Adenosine triphosphate > Carbon dioxide + Phosphoenolpyruvic acid + ADP
Pyridoxamine + Oxalacetic acid <> Pyridoxal + L-Aspartic acid
L-Aspartic acid + Oxoglutaric acid > Oxalacetic acid + L-Glutamate
Inorganic phosphate + Oxalacetic acid > Water + Phosphoenolpyruvic acid + Carbonic acid
Acetyl-CoA + Water + Oxalacetic acid > Citric acid + CoA
(3S)-Citryl-CoA > Acetyl-CoA + Oxalacetic acid
L-Malic acid + NAD > Oxalacetic acid + NADH
L-Malic acid + a quinone > Oxalacetic acid + reduced quinone
Propionyl-CoA + Water + Oxalacetic acid > (2R,3S)-2-Hydroxybutane-1,2,3-tricarboxylate + CoA
Tartaric acid > Oxalacetic acid + Water
(3S)-Citryl-CoA <> Acetyl-CoA + Oxalacetic acid
L-Malic acid + NAD + Oxalacetic acid <> Pyruvic acid + Carbon dioxide + NADH
L-Malic acid + Quinone <> Oxalacetic acid + Hydroquinone
L-Malic acid + NADP + Oxalacetic acid <> Pyruvic acid + Carbon dioxide + NADPH
Acetyl-CoA + Water + Oxalacetic acid > Citric acid + Coenzyme A
L-Malic acid + NAD + L-Malic acid <> Oxalacetic acid + NADH + Hydrogen ion
Adenosine triphosphate + Pyruvic acid + Hydrogen carbonate > Adenosine diphosphate + Phosphate + Oxalacetic acid + ADP
Oxalacetic acid + Water + Acetyl-CoA > Citric acid + Coenzyme A + Hydrogen ion
L-Malic acid + NAD + L-Malic acid > Oxalacetic acid + NADH + Hydrogen ion
L-Malic acid + Quinone + L-Malic acid > Oxalacetic acid + Hydroquinone
L-Aspartic acid + Oxoglutaric acid + L-Aspartic acid > Oxalacetic acid + L-Glutamic acid + L-Glutamate
L-Glutamic acid + Oxalacetic acid + L-Glutamate > L-Aspartic acid + Oxoglutaric acid + L-Aspartic acid
L-Aspartic acid + Water + Oxygen + L-Aspartic acid > Oxalacetic acid + Ammonia + Hydrogen peroxide
Oxalacetic acid + Adenosine triphosphate > Adenosine diphosphate + Carbon dioxide + Phosphoenolpyruvic acid + ADP
Propionyl-CoA + Water + Oxalacetic acid + Propionyl-CoA > Coenzyme A + Hydrogen ion + 2-Methylcitric acid + Methylcitric acid
Water + Oxalacetic acid + Propionyl-CoA <> Methylcitric acid + Coenzyme A + Hydrogen ion + (2S,3S)-2-hydroxybutane-1,2,3-tricarboxylate
Acetyl-CoA + Water + Oxalacetic acid <> Citric acid + Coenzyme A + Hydrogen ion
L-Malic acid + FAD <> FADH2 + Oxalacetic acid
L-Malic acid + Quinone <> Oxalacetic acid + Hydroquinone
Carbon dioxide + Water + Phosphoenolpyruvic acid <> Hydrogen ion + Oxalacetic acid + Phosphate + Hydrogen carbonate
Adenosine triphosphate + Oxalacetic acid <> ADP + Carbon dioxide + Phosphoenolpyruvic acid
Acetyl-CoA + Water + Oxalacetic acid <> Citric acid + Coenzyme A + Hydrogen ion
L-Malic acid + FAD <> FADH2 + Oxalacetic acid
More...

SMPDB Pathways:
Asparagine biosynthesisPW000813 ThumbThumb?image type=greyscaleThumb?image type=simple
Aspartate metabolismPW000787 ThumbThumb?image type=greyscaleThumb?image type=simple
Gluconeogenesis from L-malic acidPW000819 ThumbThumb?image type=greyscaleThumb?image type=simple
L-glutamate metabolismPW000789 ThumbThumb?image type=greyscaleThumb?image type=simple
Phenylalanine metabolismPW000921 ThumbThumb?image type=greyscaleThumb?image type=simple
Propanoate metabolismPW000940 ThumbThumb?image type=greyscaleThumb?image type=simple
Secondary Metabolites: Glyoxylate cyclePW000967 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cyclePW000779 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-0)PW002023 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-10)PW001010 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-2)PW001002 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-3)PW001003 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-4)PW001004 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-5)PW001005 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-6)PW001006 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-7)PW001007 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-8)PW001008 ThumbThumb?image type=greyscaleThumb?image type=simple
TCA cycle (ubiquinol-9)PW001009 ThumbThumb?image type=greyscaleThumb?image type=simple
glycolate and glyoxylate degradation IIPW002021 ThumbThumb?image type=greyscaleThumb?image type=simple
threonine biosynthesisPW000817 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
  • Alanine, aspartate and glutamate metabolism ec00250
  • Arginine and proline metabolism ec00330
  • Benzoate degradation via hydroxylation ec00362
  • Carbon fixation in photosynthetic organisms ec00710
  • Citrate cycle (TCA cycle) ec00020
  • Cysteine and methionine metabolism ec00270
  • Glycolysis / Gluconeogenesis ec00010
  • Glyoxylate and dicarboxylate metabolism ec00630
  • Isoquinoline alkaloid biosynthesis ec00950
  • Metabolic pathways eco01100
  • Methane metabolism ec00680
  • Microbial metabolism in diverse environments ec01120
  • Novobiocin biosynthesis ec00401
  • Phenylalanine metabolism ec00360
  • Phenylalanine, tyrosine and tryptophan biosynthesis ec00400
  • Propanoate metabolism ec00640
  • Pyruvate metabolism ec00620
  • Reductive carboxylate cycle (CO2 fixation) ec00720
  • Tropane, piperidine and pyridine alkaloid biosynthesis ec00960
  • Two-component system ec02020
  • Tyrosine metabolism ec00350
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
30± 1 uMBW25113M9 Minimal Media, 4 g/L GlucoseMid-Log PhaseBioreactor, pH controlled, O2 controlled, dilution rate: 0.2/h37 oCPMID: 15158257
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-00dr-4900000000-9d943d40beaca3c602a1View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 2 TMS)splash10-007a-9210000000-020f60717e2ea79d1ccdView in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 2 TMS)splash10-000b-9540000000-a53f674cc98960834f88View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 3 TMS)splash10-001a-8940000000-40b790e06141d7180938View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-007a-9210000000-020f60717e2ea79d1ccdView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-000b-9540000000-a53f674cc98960834f88View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-001a-8940000000-40b790e06141d7180938View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0002-4930000000-7e995327b0b9c1af0914View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-000f-9100000000-6718417e7196063f9544View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-00ds-9520000000-5a082ec8843f6fbc3b15View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-000i-9000000000-0be675f3aa3e973393b7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-000f-9000000000-4fba97fcd7b0f2215f75View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Negative (Annotated)splash10-0006-9000000000-9b1f4171aee6283a3cbdView in MoNA
LC-MS/MSLC-MS/MS Spectrum - , negativesplash10-014i-0900000000-7c598fd9c78acb94dacdView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 3V, positivesplash10-014i-4900000000-e7803730ae7986a1b9fbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 4V, positivesplash10-014r-5900000000-8e478338a7c0e65e62baView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 5V, positivesplash10-014r-7900000000-f681763317e1ae86e691View in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 7V, positivesplash10-00kr-9600000000-aa8adf9a96041dddbbddView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 10V, positivesplash10-000i-9200000000-e62c47ca2bc492900178View in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 15V, positivesplash10-000i-9000000000-5485ddd84a64ea0ca0b9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 17V, positivesplash10-000i-9000000000-79521cb04a2b23e39c1eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 20V, positivesplash10-000m-9000000000-601c8d2ec63f8b01a61eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 23V, positivesplash10-000e-9000000000-13d369c58d8930958d92View in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 25V, positivesplash10-0005-9000000000-df8387ef907fb71342ebView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 27V, positivesplash10-0005-9000000000-908644b5d7041346f582View in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 30V, positivesplash10-0005-9000000000-ecca787a800164d0296fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 33V, positivesplash10-0005-9000000000-180a7c51b1f93cb8fff2View in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 35V, positivesplash10-0005-9000000000-709c49f609f5a711a288View in MoNA
LC-MS/MSLC-MS/MS Spectrum - QTOF 40V, positivesplash10-0005-9000000000-aa103ab9beb03bd6eb22View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-3900000000-6f4e965a3f513bf8db13View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-9600000000-8ae7abf60057088e14dbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-01bc-9100000000-5724c215c46a4f568140View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0019-8900000000-829898d0849b1fbf1c28View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-000i-9100000000-5a5ff8fb7cb52eebf0c8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9000000000-657d1384d478ddc33b6dView in MoNA
MSMass Spectrum (Electron Ionization)splash10-0006-9000000000-f371299a07d43c23ff1dView in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Allen RH, Stabler SP, Savage DG, Lindenbaum J: Elevation of 2-methylcitric acid I and II levels in serum, urine, and cerebrospinal fluid of patients with cobalamin deficiency. Metabolism. 1993 Aug;42(8):978-88. Pubmed: 8345822
  • Dworzak E, Grunicke H, Berger H, Jarosch E, Haas H, Hopfel I: [Pyruvate dehydrogenase deficiency in a child with persistent lactic acidosis] J Clin Chem Clin Biochem. 1985 Jun;23(6):323-9. Pubmed: 3926941
  • Efimov AS, Gulyi MF, Shcherbak AV, Dzvonkevich ND: [Levels of Krebs cycle metabolites in the blood and urine of patients with diabetes mellitus] Probl Endokrinol (Mosk). 1983 Mar-Apr;29(2):10-4. Pubmed: 6856592
  • el-Sharabasy MM: Observations on calcium oxalate stone formers. Br J Urol. 1992 Nov;70(5):474-7. Pubmed: 1361403
  • Esenmo E, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR: Use of 14CO2 in estimating rates of hepatic gluconeogenesis. Am J Physiol. 1992 Jul;263(1 Pt 1):E36-41. Pubmed: 1322046
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Koike K, Koike M: Fluorescent analysis of alpha-keto acids in serum and urine by high-performance liquid chromatography. Anal Biochem. 1984 Sep;141(2):481-7. Pubmed: 6437276
  • Olubuyide IO, Festing MF, Chapman C, Higginson J, Whicher JT: Discriminant analysis of biochemical parameters in liver disease. Trop Gastroenterol. 1997 Jan-Mar;18(1):15-9. Pubmed: 9197166
  • Peng, L., Arauzo-Bravo, M. J., Shimizu, K. (2004). "Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements." FEMS Microbiol Lett 235:17-23. Pubmed: 15158257
  • Petrarulo M, Facchini P, Cerelli E, Marangella M, Linari F: Citrate in urine determined with a new citrate lyase method. Clin Chem. 1995 Oct;41(10):1518-21. Pubmed: 7586527
  • Rabinovich PD, Miliushkin PV: [Content of biological oxidation metabolites in the blood and urine of peptic ulcer patients] Vopr Med Khim. 1979 Nov-Dec;25(6):755-8. Pubmed: 516538
  • Schauenstein E, Kronberger L, Schaur RJ, Fink E, Georgiopulos E: [Malate and oxaloacetate levels in whole blood of patients with and without malignant tumor diseases] Wien Klin Wochenschr. 1973 Jun 29;85(26):478-82. Pubmed: 4717666
  • Sperl W, Maurer H, Dworschak E, Hopfel I, Hammerer I: [Lactic acid acidosis with mitochondrial myopathy due to a pyruvate dehydrogenase deficiency] Padiatr Padol. 1985;20(1):55-67. Pubmed: 3919358
  • Sweatman BC, Farrant RD, Holmes E, Ghauri FY, Nicholson JK, Lindon JC: 600 MHz 1H-NMR spectroscopy of human cerebrospinal fluid: effects of sample manipulation and assignment of resonances. J Pharm Biomed Anal. 1993 Aug;11(8):651-64. Pubmed: 8257730
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Wong LT, Davidson AG, Applegarth DA, Dimmick JE, Norman MG, Toone JR, Pirie G, Wong J: Biochemical and histologic pathology in an infant with cross-reacting material (negative) pyruvate carboxylase deficiency. Pediatr Res. 1986 Mar;20(3):274-9. Pubmed: 3085060
  • Zupke C, Sinskey AJ, Stephanopoulos G: Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol. 1995 Dec;44(1-2):27-36. Pubmed: 8579834
Synthesis Reference:Heidelberger, Charles; Hurlbert, Robert B. The synthesis of oxalacetic acid-I-C14 and orotic acid-6-C14. Journal of the American Chemical Society (1950), 72 4704-6.
Material Safety Data Sheet (MSDS)Not Available
External Links:
ResourceLink
CHEBI ID16452
HMDB IDHMDB00223
Pubchem Compound ID970
Kegg IDC00036
ChemSpider ID945
WikipediaOxalacetic acid
BioCyc IDOXALACETIC_ACID
EcoCyc IDOXALACETIC_ACID
Ligand ExpoOAA

Enzymes

General function:
Involved in transferase activity
Specific function:
L-aspartate + 2-oxoglutarate = oxaloacetate + L-glutamate
Gene Name:
aspC
Uniprot ID:
P00509
Molecular weight:
43573
Reactions
L-aspartate + 2-oxoglutarate = oxaloacetate + L-glutamate.
General function:
Involved in phosphoenolpyruvate carboxylase activity
Specific function:
Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle
Gene Name:
ppc
Uniprot ID:
P00864
Molecular weight:
99062
Reactions
Phosphate + oxaloacetate = H(2)O + phosphoenolpyruvate + HCO(3)(-).
General function:
Involved in transferase activity
Specific function:
An aromatic amino acid + 2-oxoglutarate = an aromatic oxo acid + L-glutamate
Gene Name:
tyrB
Uniprot ID:
P04693
Molecular weight:
43537
Reactions
An aromatic amino acid + 2-oxoglutarate = an aromatic oxo acid + L-glutamate.
General function:
Involved in lyase activity
Specific function:
(R,R)-tartrate = oxaloacetate + H(2)O
Gene Name:
ttdA
Uniprot ID:
P05847
Molecular weight:
32733
Reactions
(R,R)-tartrate = oxaloacetate + H(2)O.
General function:
Involved in catalytic activity
Specific function:
4-hydroxy-2-oxoglutarate = pyruvate + glyoxylate
Gene Name:
eda
Uniprot ID:
P0A955
Molecular weight:
22284
Reactions
4-hydroxy-2-oxoglutarate = pyruvate + glyoxylate.
2-dehydro-3-deoxy-D-gluconate 6-phosphate = pyruvate + D-glyceraldehyde 3-phosphate.
General function:
Involved in carbon-carbon lyase activity
Specific function:
Represents a citryl-ACP lyase
Gene Name:
citE
Uniprot ID:
P0A9I1
Molecular weight:
33109
Reactions
Citrate = acetate + oxaloacetate.
(3S)-citryl-CoA = acetyl-CoA + oxaloacetate.
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
Gene Name:
gltA
Uniprot ID:
P0ABH7
Molecular weight:
48015
Reactions
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA.
General function:
Involved in hydro-lyase activity
Specific function:
(R,R)-tartrate = oxaloacetate + H(2)O
Gene Name:
ttdB
Uniprot ID:
P0AC35
Molecular weight:
22679
Reactions
(R,R)-tartrate = oxaloacetate + H(2)O.
General function:
Involved in electron carrier activity
Specific function:
Catalyzes the oxidation of L-aspartate to iminoaspartate
Gene Name:
nadB
Uniprot ID:
P10902
Molecular weight:
60337
Reactions
L-aspartate + O(2) = iminosuccinate + H(2)O(2).
General function:
Involved in lyase activity
Specific function:
It functions in the generation of fumarate for use as an anaerobic electron acceptor
Gene Name:
fumB
Uniprot ID:
P14407
Molecular weight:
60105
Reactions
(S)-malate = fumarate + H(2)O.
General function:
Involved in phosphoenolpyruvate carboxykinase (ATP) activity
Specific function:
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2)
Gene Name:
pckA
Uniprot ID:
P22259
Molecular weight:
59643
Reactions
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2).
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Catalyzes the synthesis of 2-methylcitrate from propionyl-CoA and oxaloacetate. Also catalyzes the condensation of oxaloacetate with acetyl-CoA but with a lower specificity
Gene Name:
prpC
Uniprot ID:
P31660
Molecular weight:
43102
Reactions
Propanoyl-CoA + H(2)O + oxaloacetate = (2R,3S)-2-hydroxybutane-1,2,3-tricarboxylate + CoA.
General function:
Involved in malate dehydrogenase (quinone) activity
Specific function:
(S)-malate + a quinone = oxaloacetate + reduced quinone
Gene Name:
mqo
Uniprot ID:
P33940
Molecular weight:
60229
Reactions
(S)-malate + a quinone = oxaloacetate + reduced quinone.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Catalyzes the reversible oxidation of malate to oxaloacetate
Gene Name:
mdh
Uniprot ID:
P61889
Molecular weight:
32337
Reactions
(S)-malate + NAD(+) = oxaloacetate + NADH.
General function:
Energy production and conversion
Specific function:
Covalent carrier of the coenzyme of citrate lyase
Gene Name:
citD
Uniprot ID:
P69330
Molecular weight:
10689
General function:
Involved in citrate CoA-transferase activity
Specific function:
Represents a citrate:acetyl-ACP transferase
Gene Name:
citF
Uniprot ID:
P75726
Molecular weight:
55172
Reactions
Citrate = acetate + oxaloacetate.
Acetyl-CoA + citrate = acetate + (3S)-citryl-CoA.
General function:
Involved in prosthetic group biosynthetic process
Specific function:
Transfers 2-(5''-triphosphoribosyl)-3'- dephosphocoenzyme-A on a serine residue to the apo-acyl carrier protein (gamma chain) of the citrate lyase to yield holo-acyl carrier protein
Gene Name:
citX
Uniprot ID:
P0A6G5
Molecular weight:
20270
Reactions
2'-(5-triphosphoribosyl)-3'-dephospho-CoA + citrate lyase apo-[acyl-carrier-protein] = citrate lyase holo-[acyl-carrier-protein] + diphosphate.