Record Information
Version2.0
Creation Date2012-05-31 10:23:32 -0600
Update Date2015-09-13 12:56:06 -0600
Secondary Accession Numbers
  • ECMDB00195
Identification
Name:Inosine
DescriptionInosine is purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed)
Structure
Thumb
Synonyms:
  • (-)-Inosine
  • 1,9-Dihydro-9-b-D-ribofuranosyl-6H-Purin-6-one
  • 1,9-dihydro-9-b-delta-Ribofuranosyl-6H-purin-6-one
  • 1,9-dihydro-9-b-δ-Ribofuranosyl-6H-purin-6-one
  • 1,9-Dihydro-9-beta-D-ribofuranosyl-6H-purin-6-one
  • 1,9-Dihydro-9-beta-delta-ribofuranosyl-6H-purin-6-one
  • 1,9-dihydro-9-β-D-Ribofuranosyl-6H-purin-6-one
  • 1,9-dihydro-9-β-δ-Ribofuranosyl-6H-purin-6-one
  • 9-b-D-Ribofuranosyl-Hypoxanthine
  • 9-b-D-Ribofuranosylhypoxanthine
  • 9-b-delta-Ribofuranosyl-hypoxanthine
  • 9-b-delta-Ribofuranosylhypoxanthine
  • 9-b-δ-Ribofuranosyl-hypoxanthine
  • 9-b-δ-Ribofuranosylhypoxanthine
  • 9-beta-D-Ribofuranosyl-Hypoxanthine
  • 9-beta-D-Ribofuranosylhypoxanthine
  • 9-beta-delta-Ribofuranosyl-Hypoxanthine
  • 9-beta-delta-Ribofuranosylhypoxanthine
  • 9-β-D-Ribofuranosyl-hypoxanthine
  • 9-β-D-Ribofuranosylhypoxanthine
  • 9-β-δ-Ribofuranosyl-hypoxanthine
  • 9-β-δ-Ribofuranosylhypoxanthine
  • 9b-D-Ribofuranosylhypoxanthine
  • 9b-delta-Ribofuranosylhypoxanthine
  • 9b-δ-Ribofuranosylhypoxanthine
  • 9beta-D-Ribofuranosylhypoxanthine
  • 9beta-delta-Ribofuranosylhypoxanthine
  • 9β-D-Ribofuranosylhypoxanthine
  • 9β-δ-Ribofuranosylhypoxanthine
  • Atorel
  • b-D-Ribofuranoside hypoxanthine-9
  • b-delta-Ribofuranoside hypoxanthine-9
  • b-Inosine
  • b-δ-Ribofuranoside hypoxanthine-9
  • Beta-D-Ribofuranoside hypoxanthine-9
  • Beta-delta-Ribofuranoside hypoxanthine-9
  • Beta-Inosine
  • HXR
  • Hypoxanthine 9-b-D-ribofuranoside
  • Hypoxanthine 9-b-delta-ribofuranoside
  • Hypoxanthine 9-b-δ-ribofuranoside
  • Hypoxanthine 9-beta-D-ribofuranoside
  • Hypoxanthine 9-beta-delta-ribofuranoside
  • Hypoxanthine 9-β-D-ribofuranoside
  • Hypoxanthine 9-β-δ-ribofuranoside
  • Hypoxanthine D-riboside
  • Hypoxanthine nucleoside
  • Hypoxanthine ribonucleoside
  • Hypoxanthine riboside
  • Hypoxanthine-9 b-D-ribofuranoside
  • Hypoxanthine-9 b-delta-ribofuranoside
  • Hypoxanthine-9 b-δ-ribofuranoside
  • Hypoxanthine-9 beta-D-Ribofuranoside
  • Hypoxanthine-9 beta-delta-Ribofuranoside
  • Hypoxanthine-9 β-D-ribofuranoside
  • Hypoxanthine-9 β-δ-ribofuranoside
  • Hypoxanthine-9-b-D-ribofuranoside
  • Hypoxanthine-9-b-delta-ribofuranoside
  • Hypoxanthine-9-b-δ-ribofuranoside
  • Hypoxanthine-9-beta-D-ribofuranoside
  • Hypoxanthine-9-beta-delta-ribofuranoside
  • Hypoxanthine-9-D-ribofuranoside
  • Hypoxanthine-9-delta-ribofuranoside
  • Hypoxanthine-9-β-D-ribofuranoside
  • Hypoxanthine-9-β-δ-ribofuranoside
  • Hypoxanthine-9-δ-ribofuranoside
  • Hypoxanthine-ribose
  • Hypoxanthosine
  • Indole-3-carboxaldehyde
  • Ino
  • Inosie
  • Iso-prinosine
  • Oxiamin
  • Panholic-L
  • Pantholic-L
  • Ribonosine
  • Riboxine
  • Selfer
  • Trophicardyl
  • β-D-Ribofuranoside hypoxanthine-9
  • β-Inosine
  • β-δ-Ribofuranoside hypoxanthine-9
Chemical Formula:C10H12N4O5
Weight:Average: 268.2261
Monoisotopic: 268.080769514
InChI Key:UGQMRVRMYYASKQ-KQYNXXCUSA-N
InChI:InChI=1S/C10H12N4O5/c15-1-4-6(16)7(17)10(19-4)14-3-13-5-8(14)11-2-12-9(5)18/h2-4,6-7,10,15-17H,1H2,(H,11,12,18)/t4-,6-,7-,10-/m1/s1
CAS number:58-63-9
IUPAC Name:9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-3H-purin-6-one
Traditional IUPAC Name:inosine
SMILES:OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)N1C=NC2=C1NC=NC2=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleosides
Sub ClassNot Available
Direct ParentPurine nucleosides
Alternative Parents
Substituents
  • Purine nucleoside
  • Glycosyl compound
  • N-glycosyl compound
  • 6-oxopurine
  • Hypoxanthine
  • Pentose monosaccharide
  • Purinone
  • Imidazopyrimidine
  • Purine
  • Pyrimidone
  • Pyrimidine
  • Monosaccharide
  • N-substituted imidazole
  • Vinylogous amide
  • Tetrahydrofuran
  • Heteroaromatic compound
  • Azole
  • Imidazole
  • Secondary alcohol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Alcohol
  • Organonitrogen compound
  • Organic nitrogen compound
  • Organooxygen compound
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Primary alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:0
Melting point:218 °C
Experimental Properties:
PropertyValueSource
Water Solubility:15.8 mg/mL [YALKOWSKY,SH & DANNENFELSER,RM (1992)]; 35 mg/mL [HMP experimental]PhysProp
LogP:-2.10 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
logP-2ChemAxon
pKa (Strongest Acidic)6.94ChemAxon
pKa (Strongest Basic)2.74ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count8ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area129.2 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity60.9 m³·mol⁻¹ChemAxon
Polarizability24.6 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
adenine and adenosine salvage IPW002069 ThumbThumb?image type=greyscaleThumb?image type=simple
adenine and adenosine salvage IIPW002071 ThumbThumb?image type=greyscaleThumb?image type=simple
adenosine nucleotides degradationPW002091 ThumbThumb?image type=greyscaleThumb?image type=simple
purine ribonucleosides degradationPW002076 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
31± 0 uMBW2511348 mM Na2HPO4, 22 mM KH2PO4, 10 mM NaCl, 45 mM (NH4)2SO4, supplemented with 1 mM MgSO4, 1 mg/l thiamine·HCl, 5.6 mg/l CaCl2, 8 mg/l FeCl3, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·2H2O and 0.6 mg/l Na2MoO4·2H2O. 4 g/L GlucoStationary Phase, glucose limitedBioreactor, pH controlled, O2 and CO2 controlled, dilution rate: 0.2/h37 oCPMID: 17379776
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0frt-0890000000-c0c5ebc2bbf12c1a7edfView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (4 TMS)splash10-00di-9440000000-566aadb777ee03fb22fbView in MoNA
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-0fsi-1690000000-364bf8794afeeff6ba51View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0frt-0890000000-c0c5ebc2bbf12c1a7edfView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9440000000-566aadb777ee03fb22fbView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0fsi-1690000000-364bf8794afeeff6ba51View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0adl-9250000000-d6ee10ae0804bda3e4ceView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (3 TMS) - 70eV, Positivesplash10-0lmr-8659500000-9f567e118aa09e880541View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_5) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_6) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_2) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_3) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_4) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_4_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-014r-0490020000-6eeacbf0ca8726ed8542View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0006-9100000000-cdcc2e477ba37ca8f07aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0900000000-f96733a8f63a90d3644dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0002-0900000000-b9b05cbee9a42ce87c0fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-015i-0696011000-c836d8cd13395c898ae1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0006-9100000000-d8c6fdb9231ac2c6e939View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0900000000-632ba91cd477e5aaf9e5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0910000000-fc11279b73334e4ea0a8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-014i-0090000000-00981efb4a9571473866View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-014i-0390000000-989ff580a7b60b151996View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-000i-0920000000-b78cba83cbf8f1ae48f3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-000i-0910000000-505a6507fcb525fe9a14View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-052r-2900000000-33d1372d34f6b06e3a2fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-000i-0930000000-9285a36e16cdf00b3f71View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-014i-0090000000-00981efb4a9571473866View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-014i-0390000000-989ff580a7b60b151996View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-000i-0920000000-b78cba83cbf8f1ae48f3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-000i-0910000000-c6d9b3470f4bf20f2031View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-052r-2900000000-33d1372d34f6b06e3a2fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-IT , negativesplash10-000i-0900000000-cb192ec0941c4e4f04b1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0006-9100000000-1b4c3c2319fbba7de36bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-001i-0900000000-cc8e5ee2239e2de92705View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0006-9100000000-d8c6fdb9231ac2c6e939View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-001i-0900000000-632ba91cd477e5aaf9e5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-000i-0930000000-6d3be934cd4b9ed750ddView in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Burger DM, Kraayeveld CL, Meenhorst PL, Mulder JW, Hoetelmans RM, Koks CH, Beijnen JH: Study on didanosine concentrations in cerebrospinal fluid. Implications for the treatment and prevention of AIDS dementia complex. Pharm World Sci. 1995 Nov 24;17(6):218-21. Pubmed: 8597780
  • Castro-Gago M, Cid E, Trabazo S, Pavon P, Camina F, Rodriguez-Segade S, Einis Punal J, Rodriguez-Nunez A: Cerebrospinal fluid purine metabolites and pyrimidine bases after brief febrile convulsions. Epilepsia. 1995 May;36(5):471-4. Pubmed: 7614924
  • Chantin C, Bonin B, Boulieu R, Bory C: Liquid-chromatographic study of purine metabolism abnormalities in purine nucleoside phosphorylase deficiency. Clin Chem. 1996 Feb;42(2):326-8. Pubmed: 8595732
  • Eells JT, Spector R: Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem Res. 1983 Nov;8(11):1451-7. Pubmed: 6656991
  • Fazekas L, Horkay F, Kekesi V, Huszar E, Barat E, Fazekas R, Szabo T, Juhasz-Nagy A, Naszlady A: Enhanced accumulation of pericardial fluid adenosine and inosine in patients with coronary artery disease. Life Sci. 1999;65(10):1005-12. Pubmed: 10499868
  • Fukumori Y, Takeda H, Fujisawa T, Ushijima K, Onodera S, Shiomi N: Blood glucose and insulin concentrations are reduced in humans administered sucrose with inosine or adenosine. J Nutr. 2000 Aug;130(8):1946-9. Pubmed: 10917906
  • Harkness RA, Lund RJ: Cerebrospinal fluid concentrations of hypoxanthine, xanthine, uridine and inosine: high concentrations of the ATP metabolite, hypoxanthine, after hypoxia. J Clin Pathol. 1983 Jan;36(1):1-8. Pubmed: 6681617
  • Hsiao G, Lin KH, Chang Y, Chen TL, Tzu NH, Chou DS, Sheu JR: Protective mechanisms of inosine in platelet activation and cerebral ischemic damage. Arterioscler Thromb Vasc Biol. 2005 Sep;25(9):1998-2004. Epub 2005 Jun 23. Pubmed: 15976325
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Jabs CM, Sigurdsson GH, Neglen P: Plasma levels of high-energy compounds compared with severity of illness in critically ill patients in the intensive care unit. Surgery. 1998 Jul;124(1):65-72. Pubmed: 9663253
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kurtz TW, Kabra PM, Booth BE, Al-Bander HA, Portale AA, Serena BG, Tsai HC, Morris RC Jr: Liquid-chromatographic measurements of inosine, hypoxanthine, and xanthine in studies of fructose-induced degradation of adenine nucleotides in humans and rats. Clin Chem. 1986 May;32(5):782-6. Pubmed: 3698269
  • Mabley JG, Rabinovitch A, Suarez-Pinzon W, Hasko G, Pacher P, Power R, Southan G, Salzman A, Szabo C: Inosine protects against the development of diabetes in multiple-low-dose streptozotocin and nonobese diabetic mouse models of type 1 diabetes. Mol Med. 2003 Mar-Apr;9(3-4):96-104. Pubmed: 12865945
  • Mattle HP, Lienert C, Greeve I: [Uric acid and multiple sclerosis] Ther Umsch. 2004 Sep;61(9):553-5. Pubmed: 15493114
  • Nakao T, Nagai F, Nakao M: Posttransfusion viability of rabbit erythrocytes preserved in a medium containing inosine, adenine, and isoosmotic sucrose. Vox Sang. 1982;42(4):217-22. Pubmed: 7090336
  • Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2(1):18. Pubmed: 15882454
  • Niwa T, Takeda N, Yoshizumi H: RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note. Kidney Int. 1998 Jun;53(6):1801-6. Pubmed: 9607216
  • Osborne WR, Hammond WP, Dale DC: Human cyclic hematopoiesis is associated with aberrant purine metabolism. J Lab Clin Med. 1985 Apr;105(4):403-9. Pubmed: 3981053
  • Rodriguez-Nunez A, Camina F, Lojo S, Rodriguez-Segade S, Castro-Gago M: Concentrations of nucleotides, nucleosides, purine bases and urate in cerebrospinal fluid of children with meningitis. Acta Paediatr. 1993 Oct;82(10):849-52. Pubmed: 8241644
  • Scott GS, Spitsin SV, Kean RB, Mikheeva T, Koprowski H, Hooper DC: Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16303-8. Epub 2002 Nov 25. Pubmed: 12451183
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Yamamoto T, Moriwaki Y, Cheng J, Takahashi S, Tsutsumi Z, Ka T, Hada T: Effect of inosine on the plasma concentration of uridine and purine bases. Metabolism. 2002 Apr;51(4):438-42. Pubmed: 11912550
Synthesis Reference:Shi, Qingshan; Qiu, Yutang; Li, Liangqiu; Lin, Xiaoping. New inosine-producing bacterium and method for producing inosine. Faming Zhuanli Shenqing Gongkai Shuomingshu (2003), 6 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID17596
HMDB IDHMDB00195
Pubchem Compound ID6021
Kegg IDC00294
ChemSpider ID5799
WikipediaInosine
BioCyc IDINOSINE
EcoCyc IDINOSINE
Ligand ExpoNOS

Enzymes

General function:
Involved in hydrolase activity
Specific function:
Degradation of external UDP-glucose to uridine monophosphate and glucose-1-phosphate, which can then be used by the cell
Gene Name:
ushA
Uniprot ID:
P07024
Molecular weight:
60824
Reactions
UDP-sugar + H(2)O = UMP + alpha-D-aldose 1-phosphate.
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in hydrolase activity
Specific function:
Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'- monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs. Also plays a significant physiological role in stress-response and is required for the survival of E.coli in stationary growth phase
Gene Name:
surE
Uniprot ID:
P0A840
Molecular weight:
26900
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
A 3'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
(Polyphosphate)(n) + H(2)O = (polyphosphate)(n-1) + phosphate.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows high phosphatase activity toward three nucleoside 5'-monophosphates, UMP, dUMP, and dTMP, and very low activity against TDP, IMP, UDP, GMP, dGMP, AMP, dAMP, and 6- phosphogluconate. Is strictly specific to substrates with 5'- phosphates and shows no activity against nucleoside 2'- or 3'- monophosphates. Might be involved in the pyrimidine nucleotide substrate cycles
Gene Name:
yjjG
Uniprot ID:
P0A8Y1
Molecular weight:
25300
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in purine-nucleoside phosphorylase activity
Specific function:
Cleavage of guanosine or inosine to respective bases and sugar-1-phosphate molecules
Gene Name:
deoD
Uniprot ID:
P0ABP8
Molecular weight:
25950
Reactions
Purine nucleoside + phosphate = purine + alpha-D-ribose 1-phosphate.
General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Uniprot ID:
P0AE22
Molecular weight:
26103
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
ATP + inosine = ADP + IMP
Gene Name:
gsk
Uniprot ID:
P0AEW6
Molecular weight:
48448
Reactions
ATP + inosine = ADP + IMP.
General function:
Involved in deaminase activity
Specific function:
Adenosine + H(2)O = inosine + NH(3)
Gene Name:
add
Uniprot ID:
P22333
Molecular weight:
36397
Reactions
Adenosine + H(2)O = inosine + NH(3).
General function:
Involved in hydrolase activity, hydrolyzing N-glycosyl compounds
Specific function:
Hydrolyzes both purine and pyrimidine ribonucleosides with a broad-substrate specificity with decreasing activity in the order uridine, xanthosine, inosine, adenosine, cytidine, guanosine
Gene Name:
rihC
Uniprot ID:
P22564
Molecular weight:
32560
General function:
Involved in hydrolase activity, hydrolyzing N-glycosyl compounds
Specific function:
Hydrolyzes cytidine or uridine to ribose and cytosine or uracil, respectively. Has a clear preference for cytidine over uridine. Strictly specific for ribonucleosides. Has a low but significant activity for the purine nucleoside xanthosine
Gene Name:
rihB
Uniprot ID:
P33022
Molecular weight:
33748
Reactions
A pyrimidine nucleoside + H(2)O = D-ribose + a pyrimidine base.
General function:
Involved in catalytic activity
Specific function:
Nucleotidase that shows strict specificity toward deoxyribonucleoside 5'-monophosphates and does not dephosphorylate 5'-ribonucleotides or ribonucleoside 3'-monophosphates. Might be involved in the regulation of all dNTP pools in E.coli
Gene Name:
yfbR
Uniprot ID:
P76491
Molecular weight:
22708
Reactions
A 5'-ribonucleotide + H(2)O = a ribonucleoside + phosphate.
General function:
Involved in purine-nucleoside phosphorylase activity
Specific function:
The nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the nucleoside molecule, with the formation of the corresponding free bases and pentose-1-phosphate. This protein can degrade all purine nucleosides except adenosine and deoxyadenosine
Gene Name:
xapA
Uniprot ID:
P45563
Molecular weight:
29834
General function:
Energy production and conversion
Specific function:
Deaminates adenosine-34 to inosine in tRNA-Arg2. Mutation in this protein makes E.coli resistant to the toxic proteins encoded by the gef gene family. Essential for cell viability
Gene Name:
tadA
Uniprot ID:
P68398
Molecular weight:
18717
Reactions
Adenosine + H(2)O = inosine + NH(3).

Transporters

General function:
Involved in nucleoside transmembrane transporter activity
Specific function:
Nucleoside transport
Gene Name:
xapB
Uniprot ID:
P45562
Molecular weight:
46139
General function:
Involved in nucleoside:sodium symporter activity
Specific function:
Transports nucleosides with a high affinity except guanosine and deoxyguanosine. Driven by a proton motive force
Gene Name:
nupC
Uniprot ID:
P0AFF2
Molecular weight:
43475
General function:
Involved in nucleoside transmembrane transporter activity
Specific function:
Transports nucleosides with a high affinity. Driven by a proton motive force
Gene Name:
nupG
Uniprot ID:
P0AFF4
Molecular weight:
46389
General function:
Involved in nucleoside transmembrane transporter activity
Specific function:
Constitutes the receptor for colicin K and phage T6, and functions as substrate-specific channel for nucleosides and deoxynucleosides
Gene Name:
tsx
Uniprot ID:
P0A927
Molecular weight:
33589