Record Information
Version2.0
Creation Date2012-05-31 10:22:49 -0600
Update Date2015-09-13 12:56:06 -0600
Secondary Accession Numbers
  • ECMDB00169
Identification
Name:D-Mannose
DescriptionD-Mannose is a carbohydrate. High-mannose-type oligosaccharides have been shown to play important roles in protein quality control. Several intracellular proteins, such as lectins, chaperones and glycan-processing enzymes, are involved in this process. These include calnexin/calreticulin, UDP-glucose:glycoprotein glucosyltransferase (UGGT), cargo receptors (such as VIP36 and ERGIC-53), mannosidase-like proteins (e.g. EDEM and Htm1p) and ubiquitin ligase (Fbs). They are thought to recognize high-mannose-type glycans with subtly different structures. Mannose-binding lectin (MBL) is an important constituent of the innate immune system. This protein binds through multiple lectin domains to the repeating sugar arrays that decorate many microbial surfaces, and is then able to activate the complement system through a specific protease called MBL-associated protease-2. The primary pathway for the formation of L-fucose in procaryotic and eucaryotic cells is from D-mannose via an internal oxidation reduction and then epimerization of GDP-D-mannose to produce GDP-L-fucose. (PMID: 9488699, 16154739, 11414367)
Structure
Thumb
Synonyms:
  • (+)-mannose
  • (+-)-mannose
  • Carubinose
  • Carubinose (van)
  • D(+)-Mannose
  • D-Mannopyranose
  • D-Mannose
  • DL-mannose
  • Hexose
  • Mannopyranose
  • Mannopyranoside
  • Mannose
  • Mannose (van)
  • Nchembio828-comp8
  • Seminose
Chemical Formula:C6H12O6
Weight:Average: 180.1559
Monoisotopic: 180.063388116
InChI Key:WQZGKKKJIJFFOK-QTVWNMPRSA-N
InChI:InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5+,6?/m1/s1
CAS number:3458-28-4
IUPAC Name:(3S,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol
Traditional IUPAC Name:β-glucose
SMILES:OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O
Chemical Taxonomy
Description belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a is a six-carbon containing moeity.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentHexoses
Alternative Parents
Substituents
  • Hexose monosaccharide
  • Oxane
  • Secondary alcohol
  • Hemiacetal
  • Oxacycle
  • Organoheterocyclic compound
  • Polyol
  • Hydrocarbon derivative
  • Primary alcohol
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:0
Melting point:132 °C
Experimental Properties:
PropertyValueSource
Water Solubility:713.0 mg/mL at 17 oC [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility782 g/LALOGPS
logP-2.6ALOGPS
logP-2.9ChemAxon
logS0.64ALOGPS
pKa (Strongest Acidic)11.3ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area110.38 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity35.92 m³·mol⁻¹ChemAxon
Polarizability16.14 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
Galactose metabolismPW000821 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
  • Amino sugar and nucleotide sugar metabolism ec00520
  • Fructose and mannose metabolism ec00051
  • Galactose metabolism ec00052
  • Phosphotransferase system (PTS) ec02060
EcoCyc Pathways:Not Available
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (5 TMS)splash10-0mi2-0931000000-96f0cf3c2d4a8bea25b9View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (5 TMS)splash10-00kb-1931000000-ec423f92582012821c6aView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (5 TMS)splash10-0fr2-1920000000-b6be17dc79a948dfe5faView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (5 TMS; 1 MEOX)splash10-00di-9831000000-409527d22fb759cb628fView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (5 TMS; 1 MEOX)splash10-00di-9621000000-34b421fd962840bfbaecView in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 5 TMS)splash10-066r-1942000000-1c8164b54d2d16c782c3View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 5 TMS)splash10-0ldi-1942000000-c68a088eba727f3a4adaView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0mi2-0931000000-96f0cf3c2d4a8bea25b9View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00kb-1931000000-ec423f92582012821c6aView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0fr2-1920000000-b6be17dc79a948dfe5faView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9831000000-409527d22fb759cb628fView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9621000000-34b421fd962840bfbaecView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-066r-1942000000-1c8164b54d2d16c782c3View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0ldi-1942000000-c68a088eba727f3a4adaView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0np0-9700000000-e8d638dc817e46b97d7bView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (5 TMS) - 70eV, Positivesplash10-004i-6122690000-eaf6f7adf34ccd0c667bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-01pc-6900000000-0ef33e32ee16b7803f1bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00kr-9000000000-27e169c1df0c3ee59806View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , positivesplash10-03ea-0900000000-9fb0e8db39598c7a269bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-01q9-0900000000-b0bc47623e7b2ca31c02View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03ea-3900000000-648e1637af29cf2a3518View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0007-9200000000-9e6f46a1cbf52d6e347aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-2900000000-a4ec4f0b1e29e360a952View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-01t9-6900000000-7b3ea9c64ecc8d4ac867View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-052f-9100000000-ec2bf4918640a0a36398View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Adlerberth I, Ahrne S, Johansson ML, Molin G, Hanson LA, Wold AE: A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol. 1996 Jul;62(7):2244-51. Pubmed: 8779562
  • Akazawa S, Metzger BE, Freinkel N: Relationships between glucose and mannose during late gestation in normal pregnancy and pregnancy complicated by diabetes mellitus: concurrent concentrations in maternal plasma and amniotic fluid. J Clin Endocrinol Metab. 1986 May;62(5):984-9. Pubmed: 3958133
  • Alton G, Hasilik M, Niehues R, Panneerselvam K, Etchison JR, Fana F, Freeze HH: Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology. 1998 Mar;8(3):285-95. Pubmed: 9451038
  • Biessen EA, Noorman F, van Teijlingen ME, Kuiper J, Barrett-Bergshoeff M, Bijsterbosch MK, Rijken DC, van Berkel TJ: Lysine-based cluster mannosides that inhibit ligand binding to the human mannose receptor at nanomolar concentration. J Biol Chem. 1996 Nov 8;271(45):28024-30. Pubmed: 8910412
  • Blach-Olszewska Z: Innate immunity: cells, receptors, and signaling pathways. Arch Immunol Ther Exp (Warsz). 2005 May-Jun;53(3):245-53. Pubmed: 15995585
  • Brysk MM, Miller J: Concanavalin A binding glycoprotein in human stratum corneum. J Invest Dermatol. 1984 Mar;82(3):280-2. Pubmed: 6421939
  • Burk MR, Troeger C, Brinkhaus R, Holzgreve W, Hahn S: Severely reduced presence of tissue macrophages in the basal plate of pre-eclamptic placentae. Placenta. 2001 Apr;22(4):309-16. Pubmed: 11286566
  • Carchon HA, Jaeken J: Determination of D-mannose in serum by capillary electrophoresis. Clin Chem. 2001;47(7):1319-21. Pubmed: 11427470
  • Cavallone D, Malagolini N, Monti A, Wu XR, Serafini-Cessi F: Variation of high mannose chains of Tamm-Horsfall glycoprotein confers differential binding to type 1-fimbriated Escherichia coli. J Biol Chem. 2004 Jan 2;279(1):216-22. Epub 2003 Oct 21. Pubmed: 14570881
  • Condaminet B, Peguet-Navarro J, Stahl PD, Dalbiez-Gauthier C, Schmitt D, Berthier-Vergnes O: Human epidermal Langerhans cells express the mannose-fucose binding receptor. Eur J Immunol. 1998 Nov;28(11):3541-51. Pubmed: 9842897
  • Della Porta M, Danova M, Rigolin GM, Brugnatelli S, Rovati B, Tronconi C, Fraulini C, Russo Rossi A, Riccardi A, Castoldi G: Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology. 2005;68(2-3):276-84. Epub 2005 Jul 7. Pubmed: 16015045
  • DeRossi C, Bode L, Eklund EA, Zhang F, Davis JA, Westphal V, Wang L, Borowsky AD, Freeze HH: Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J Biol Chem. 2006 Mar 3;281(9):5916-27. Epub 2005 Dec 8. Pubmed: 16339137
  • Go S, Sato C, Furuhata K, Kitajima K: Oral ingestion of mannose alters the expression level of deaminoneuraminic acid (KDN) in mouse organs. Glycoconj J. 2006 Jul;23(5-6):411-21. Pubmed: 16897182
  • Hermentin P, Witzel R, Kanzy EJ, Diderrich G, Hoffmann D, Metzner H, Vorlop J, Haupt H: The hypothetical N-glycan charge: a number that characterizes protein glycosylation. Glycobiology. 1996 Mar;6(2):217-30. Pubmed: 8727793
  • Hu P, Parenti G, Keulemans J, Hoogeveen AT: Lysosomal tartrate sensitive acid phosphatase deficiency in cells which contain lysosomal "high uptake forms". Biochem Biophys Res Commun. 1990 Mar 16;167(2):520-7. Pubmed: 2322240
  • Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ: Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol. 2002 May;44(4):903-15. Pubmed: 12010488
  • Ito Y, Hagihara S, Matsuo I, Totani K: Structural approaches to the study of oligosaccharides in glycoprotein quality control. Curr Opin Struct Biol. 2005 Oct;15(5):481-9. Pubmed: 16154739
  • Jack DL, Klein NJ, Turner MW: Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev. 2001 Apr;180:86-99. Pubmed: 11414367
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Kusmierz J, DeGeorge JJ, Sweeney D, May C, Rapoport SI: Quantitative analysis of polyols in human plasma and cerebrospinal fluid. J Chromatogr. 1989 Dec 29;497:39-48. Pubmed: 2625478
  • Lee SH, Nam SY, Chung BC: Altered profile of endogenous steroids in the urine of patients with prolactinoma. Clin Biochem. 1998 Oct;31(7):529-35. Pubmed: 9812172
  • Miras MT, Aunis D, Mandel P: Studies on the interaction of dopamine beta-hydroxylase from various sources with phytohaemagglutinins. Clin Chim Acta. 1975 Nov 3;64(3):293-302. Pubmed: 1183043
  • Nakagawa F, Schulte BA, Spicer SS: Lectin cytochemical evaluation of somatosensory neurons and their peripheral and central processes in rat and man. Cell Tissue Res. 1986;245(3):579-89. Pubmed: 3757018
  • Otter M, Zockova P, Kuiper J, van Berkel TJ, Barrett-Bergshoeff MM, Rijken DC: Isolation and characterization of the mannose receptor from human liver potentially involved in the plasma clearance of tissue-type plasminogen activator. Hepatology. 1992 Jul;16(1):54-9. Pubmed: 1618483
  • Park, S. H., Pastuszak, I., Drake, R., Elbein, A. D. (1998). "Purification to apparent homogeneity and properties of pig kidney L-fucose kinase." J Biol Chem 273:5685-5691. Pubmed: 9488699
  • Patnaik SK, Stanley P: Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. J Biol Chem. 2005 May 27;280(21):20851-9. Epub 2005 Mar 23. Pubmed: 15788414
  • Pietila EM, Tuusa JT, Apaja PM, Aatsinki JT, Hakalahti AE, Rajaniemi HJ, Petaja-Repo UE: Inefficient maturation of the rat luteinizing hormone receptor. A putative way to regulate receptor numbers at the cell surface. J Biol Chem. 2005 Jul 15;280(28):26622-9. Epub 2005 May 18. Pubmed: 15901736
  • Sarkar K, Das PK: Protective effect of neoglycoprotein-conjugated muramyl dipeptide against Leishmania donovani infection: the role of cytokines. J Immunol. 1997 Jun 1;158(11):5357-65. Pubmed: 9164956
  • Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38. Pubmed: 2026685
  • Smith ME: Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech. 2001 Jul 15;54(2):81-94. Pubmed: 11455615
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Takahashi I, Takahashi T, Mikami T, Komatsu M, Ohura T, Schuchman EH, Takada G: Acid sphingomyelinase: relation of 93lysine residue on the ratio of intracellular to secreted enzyme activity. Tohoku J Exp Med. 2005 Aug;206(4):333-40. Pubmed: 15997205
  • Thio CL, Mosbruger T, Astemborski J, Greer S, Kirk GD, O'Brien SJ, Thomas DL: Mannose binding lectin genotypes influence recovery from hepatitis B virus infection. J Virol. 2005 Jul;79(14):9192-6. Pubmed: 15994813
  • Van der Ploeg AT, Kroos MA, Willemsen R, Brons NH, Reuser AJ: Intravenous administration of phosphorylated acid alpha-glucosidase leads to uptake of enzyme in heart and skeletal muscle of mice. J Clin Invest. 1991 Feb;87(2):513-8. Pubmed: 1991835
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Wu X, Rush JS, Karaoglu D, Krasnewich D, Lubinsky MS, Waechter CJ, Gilmore R, Freeze HH: Deficiency of UDP-GlcNAc:Dolichol Phosphate N-Acetylglucosamine-1 Phosphate Transferase (DPAGT1) causes a novel congenital disorder of Glycosylation Type Ij. Hum Mutat. 2003 Aug;22(2):144-50. Pubmed: 12872255
Synthesis Reference: Sowden, John C.; Fischer, Hermann O. L. Condensation of nitromethane with D- and L-arabinose: preparation of L-glucose and L-mannose. Journal of the American Chemical Society (1947), 69 1963-5.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID16024
HMDB IDHMDB00169
Pubchem Compound ID18950
Kegg IDC00159
ChemSpider ID17893
WikipediaD-Mannose
BioCyc IDMANNOSE
EcoCyc IDMANNOSE

Enzymes

General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
Hydrolysis of terminal, non-reducing alpha-D- galactose residues in alpha-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids
Gene Name:
melA
Uniprot ID:
P06720
Molecular weight:
50657
Reactions
Hydrolysis of terminal, non-reducing alpha-D-galactose residues in alpha-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr)
Gene Name:
ptsI
Uniprot ID:
P08839
Molecular weight:
63561
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine.
General function:
Involved in hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides
Specific function:
Could participate in the regulation of cell wall biosynthesis by influencing the concentration of GDP-mannose or GDP-glucose in the cell. May be involved in the degradation of GDP-mannose and GDP-glucose, diverting the GDP to the synthesis of GDP-fucose as required. Might also be involved in the biosynthesis of the slime polysaccharide colanic acid
Gene Name:
nudD
Uniprot ID:
P32056
Molecular weight:
18273
Reactions
GDP-D-mannose + H(2)O = GDP + D-mannose.
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manX
Uniprot ID:
P69797
Molecular weight:
35047
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the hydrolysis of sugar phosphate to sugar and inorganic phosphate. Has a wide substrate specificity catalyzing the hydrolysis of fructose-1-P most efficiently, but it remains uncertain if this is the real substrate in vivo
Gene Name:
supH
Uniprot ID:
P75792
Molecular weight:
30413
Reactions
Sugar phosphate + H(2)O = sugar + phosphate.
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manY
Uniprot ID:
P69801
Molecular weight:
27636
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manZ
Uniprot ID:
P69805
Molecular weight:
31303
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III)
Gene Name:
ptsH
Uniprot ID:
P0AA04
Molecular weight:
9119
Reactions
Protein HPr N(pi)-phospho-L-histidine + protein EIIA = protein HPr + protein EIIA N(tau)-phospho-L-histidine.

Transporters

General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manY
Uniprot ID:
P69801
Molecular weight:
27636
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manZ
Uniprot ID:
P69805
Molecular weight:
31303
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368