Record Information
Version2.0
Creation Date2012-05-31 09:55:42 -0600
Update Date2015-09-13 12:56:05 -0600
Secondary Accession Numbers
  • ECMDB00034
Identification
Name:Adenine
DescriptionAdenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions.
Structure
Thumb
Synonyms:
  • 1,6-Dihydro-6-iminopurine
  • 1H-Purin-6-amine
  • 1H-Purine-6-amine
  • 3,6-Dihydro-6-iminopurine
  • 6-Amino-1H-purine
  • 6-Amino-3H-purine
  • 6-Amino-7H-purine
  • 6-Amino-9H-purine
  • 6-Amino-Purine
  • 6-Aminopurine
  • 9H-Purin-6-amine
  • 9H-Purin-6-yl-amin
  • 9H-Purin-6-ylamine
  • 9H-Purine-6-amine
  • Ade
  • Adenin
  • Adenine
  • Adeninimine
  • Vitamin B4
Chemical Formula:C5H5N5
Weight:Average: 135.1267
Monoisotopic: 135.054495185
InChI Key:GFFGJBXGBJISGV-UHFFFAOYSA-N
InChI:InChI=1S/C5H5N5/c6-4-3-5(9-1-7-3)10-2-8-4/h1-2H,(H3,6,7,8,9,10)
CAS number:73-24-5
IUPAC Name:7H-purin-6-amine
Traditional IUPAC Name:vitamin B4
SMILES:NC1=C2NC=NC2=NC=N1
Chemical Taxonomy
Description belongs to the class of organic compounds known as 6-aminopurines. These are purines that carry an amino group at position 6. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassImidazopyrimidines
Sub ClassPurines and purine derivatives
Direct Parent6-aminopurines
Alternative Parents
Substituents
  • 6-aminopurine
  • Aminopyrimidine
  • Imidolactam
  • Pyrimidine
  • Heteroaromatic compound
  • Imidazole
  • Azole
  • Azacycle
  • Organic nitrogen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Primary amine
  • Organonitrogen compound
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:0
Melting point:360 °C
Experimental Properties:
PropertyValueSource
Water Solubility:1.03 mg/mL [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP:-0.09 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility11.5 g/LALOGPS
logP-0.38ALOGPS
logP-0.57ChemAxon
logS-1.1ALOGPS
pKa (Strongest Acidic)10.29ChemAxon
pKa (Strongest Basic)3.64ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area80.48 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity38.22 m³·mol⁻¹ChemAxon
Polarizability12.29 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
Adenosine + Water > Adenine + Ribose
S-Adenosylhomocysteine + Water <> Adenine + S-Ribosyl-L-homocysteine
5'-Methylthioadenosine + Water > 5-Methylthioribose + Adenine
5'-Deoxyadenosine + Water > 5'-Deoxyribose + Adenine
Adenine + Phosphoribosyl pyrophosphate <> Adenosine monophosphate + Pyrophosphate
Adenosine triphosphate + Dephospho-CoA > 2'-(5-Triphosphoribosyl)-3'-dephospho-CoA + Adenine
Adenosine monophosphate + Water <> Adenine + D-Ribose-5-phosphate
Adenine + Hydrogen ion + Water > Hypoxanthine + Ammonium
Adenosine + Phosphate <> Adenine + Ribose-1-phosphate
Deoxyadenosine + Phosphate <> Deoxyribose 1-phosphate + Adenine
Adenosine monophosphate + Pyrophosphate <> Adenine + Phosphoribosyl pyrophosphate
Adenine + Water <> Hypoxanthine + Ammonia
Adenosine + Water <> Adenine + Ribose
5'-Methylthioadenosine + Water <> Adenine + 5-Methylthioribose
Adenosine + Phosphate <> Adenine + alpha-D-Ribose 1-phosphate
Methylphosphonate + Adenosine triphosphate > &alpha;-D-ribose-1-methylphosphonate-5-triphosphate + Adenine
Hydrogen ion + Dephospho-CoA + Adenosine triphosphate > 2'-(5-Triphosphoribosyl)-3'-dephospho-CoA + Adenine
Water + Adenine > Ammonia + Hypoxanthine
Adenosine + Water > D-ribose + Adenine
S-Ribosyl-L-homocysteine + Adenine < S-Adenosylhomocysteine + Water
Pyrophosphate + Adenosine monophosphate < Phosphoribosyl pyrophosphate + Adenine
Water + Adenosine monophosphate > D-Ribose-5-phosphate + Adenine
Deoxyadenosine + Phosphate <> Adenine + deoxyribose-1-phosphate
N1-Methyladenine + Oxygen + Oxoglutaric acid > Hydrogen ion + Adenine + Carbon dioxide + Formaldehyde + Succinic acid
1-Ethyladenine + Oxygen + Oxoglutaric acid > Adenine + Carbon dioxide + Acetaldehyde + Succinic acid

SMPDB Pathways:
Citrate lyase activationPW002075 ThumbThumb?image type=greyscaleThumb?image type=simple
Collection of Reactions without pathwaysPW001891 ThumbThumb?image type=greyscaleThumb?image type=simple
Pantothenate and CoA biosynthesisPW000828 ThumbThumb?image type=greyscaleThumb?image type=simple
Quorum SensingPW000836 ThumbThumb?image type=greyscaleThumb?image type=simple
S-adenosyl-L-methionine biosynthesisPW000837 ThumbThumb?image type=greyscaleThumb?image type=simple
S-adenosyl-L-methionine cyclePW002080 ThumbThumb?image type=greyscaleThumb?image type=simple
Spermidine biosynthesis and metabolismPW002085 ThumbThumb?image type=greyscaleThumb?image type=simple
adenine and adenosine salvage IPW002069 ThumbThumb?image type=greyscaleThumb?image type=simple
adenine and adenosine salvage IIPW002071 ThumbThumb?image type=greyscaleThumb?image type=simple
adenine and adenosine salvage IIIPW002072 ThumbThumb?image type=greyscaleThumb?image type=simple
methylphosphonate degradation IPW002065 ThumbThumb?image type=greyscaleThumb?image type=simple
preQ0 metabolismPW001893 ThumbThumb?image type=greyscaleThumb?image type=simple
purine deoxyribonucleosides degradationPW002077 ThumbThumb?image type=greyscaleThumb?image type=simple
purine ribonucleosides degradationPW002076 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
  • 2'-(5'-phosphoribosyl)-3'-dephospho-CoA biosynthesis I (citrate lyase) P2-PWY
  • S-adenosyl-L-methionine cycle I PWY-6151
  • S-methyl-5'-thioadenosine degradation IV PWY0-1391
  • adenine and adenosine salvage II PWY-6605
  • adenine and adenosine salvage III PWY-6609
  • adenine and adenosine salvage V PWY-6611
  • adenosine nucleotides degradation III PWY-6617
  • autoinducer AI-2 biosynthesis I PWY-6153
  • methylphosphonate degradation PWY0-1533
  • purine deoxyribonucleosides degradation PWY0-1297
  • purine ribonucleosides degradation to ribose-1-phosphate PWY0-1296
  • queuosine biosynthesis PWY-6700
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
1± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
1± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glycerolMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
1± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L acetateMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
102± 0 uMBW2511348 mM Na2HPO4, 22 mM KH2PO4, 10 mM NaCl, 45 mM (NH4)2SO4, supplemented with 1 mM MgSO4, 1 mg/l thiamine·HCl, 5.6 mg/l CaCl2, 8 mg/l FeCl3, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·2H2O and 0.6 mg/l Na2MoO4·2H2O. 4 g/L GlucoStationary Phase, glucose limitedBioreactor, pH controlled, O2 and CO2 controlled, dilution rate: 0.2/h37 oCPMID: 17379776
34± 10 uMBL21 DE3Luria-Bertani (LB) mediaStationary phase cultures (overnight culture)Shake flask37 oCExperimentally Determined
Download Details
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-03di-3490000000-7efe9518c90307a43707View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-03di-2690000000-6dc072eb8483a2c38e18View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-00di-9350000000-220125189c286547e86cView in MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-03di-4690000000-2d327a6944df53411886View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 TMS)splash10-0006-3920000000-f488e8aa64272a07b3d9View in MoNA
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-000i-0329000000-0b012fa483ce8764d2afView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-03di-3490000000-7efe9518c90307a43707View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-03di-2690000000-6dc072eb8483a2c38e18View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9350000000-220125189c286547e86cView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-03di-4690000000-2d327a6944df53411886View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0006-3920000000-f488e8aa64272a07b3d9View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-000i-0329000000-0b012fa483ce8764d2afView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-03di-2690000000-534edabc8ab24e32f3f5View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0a5i-9700000000-e85c2b0bb19cf3401e5aView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4i-0900000000-b24b09629456779d96e6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-001i-0900000000-80808f34c7497219d349View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) 30V, Negativesplash10-0a5c-6900000000-f6c0abd6d3fca61bd7f7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT , negativesplash10-0a4i-0900000000-b24b09629456779d96e6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-001i-0900000000-80808f34c7497219d349View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-0a5c-6900000000-f6c0abd6d3fca61bd7f7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - , negativesplash10-001i-0900000000-cbe0a995dab473351f43View in MoNA
LC-MS/MSLC-MS/MS Spectrum - , negativesplash10-001i-0900000000-bfc42d662f222a7c16c7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a59-4900000000-099ee82fc2f658e1cd04View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-c100f5ac716c497996beView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-001i-0900000000-379c5c6ea7b1135677c6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-014i-9000000000-346f2325bf2e66e7a339View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-001i-0900000000-87f60041335919c4a0deView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-014l-9000000000-a71034da1c65738b37bdView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-0a5c-6900000000-f6c0abd6d3fca61bd7f7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-090d369100e8edeb5145View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-001i-0900000000-a56b3bd296195086b5d0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Negativesplash10-001i-0900000000-a76f7f2350e82c676371View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-053r-0900000000-4213d2fff3cdad674b8eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a59-0900000000-d0f2f3ccc46d430b6c3cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-0900000000-bf20f302482d1cc4a27dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Negativesplash10-0a59-3900000000-f4155217d6bcdbbcc17fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-066u-9400000000-ada6d909e20e2184a05bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-000i-0900000000-95d4894082ada0b24773View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-014i-5900000000-66b1c086d7a666b2d02bView in MoNA
MSMass Spectrum (Electron Ionization)splash10-000i-6900000000-39944576233751576a91View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Di Pietro V, Perruzza I, Amorini AM, Balducci A, Ceccarelli L, Lazzarino G, Barsotti P, Giardina B, Tavazzi B: Clinical, biochemical and molecular diagnosis of a compound homozygote for the 254 bp deletion-8 bp insertion of the APRT gene suffering from severe renal failure. Clin Biochem. 2006 Oct 19;. Pubmed: 17126311
  • Eells JT, Spector R: Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem Res. 1983 Nov;8(11):1451-7. Pubmed: 6656991
  • Hartmann S, Okun JG, Schmidt C, Langhans CD, Garbade SF, Burgard P, Haas D, Sass JO, Nyhan WL, Hoffmann GF: Comprehensive detection of disorders of purine and pyrimidine metabolism by HPLC with electrospray ionization tandem mass spectrometry. Clin Chem. 2006 Jun;52(6):1127-37. Epub 2006 Apr 13. Pubmed: 16613999
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Liu Y, Xu G, Xu C, Garcia L, Lin CC, Yeh LT: Ultra sensitive method for the determination of 9-(2-phosphonylmethoxyethyl)adenine in human serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Apr 25;803(2):293-8. Pubmed: 15063338
  • Moriyama H, Iizuka T, Nagai M, Hoshi K: Adenine, an inhibitor of platelet aggregation, from the leaves of Cassia alata. Biol Pharm Bull. 2003 Sep;26(9):1361-4. Pubmed: 12951489
  • Ohdoi C, Nyhan WL, Kuhara T: Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):123-30. Pubmed: 12829005
  • Reimers HJ, Packham MA, Mustard JF: Labeling of the releasable adenine nucleotides of washed human platelets. Blood. 1977 Jan;49(1):89-99. Pubmed: 401462
  • Rolfes RJ: Regulation of purine nucleotide biosynthesis: in yeast and beyond. Biochem Soc Trans. 2006 Nov;34(Pt 5):786-90. Pubmed: 17052198
  • Ruiz-Stewart I, Kazerounian S, Pitari GM, Schulz S, Waldman SA: Soluble guanylate cyclase is allosterically inhibited by direct interaction with 2-substituted adenine nucleotides. Eur J Biochem. 2002 Apr;269(8):2186-93. Pubmed: 11985597
  • Simoni RE, Gomes LN, Scalco FB, Oliveira CP, Aquino Neto FR, de Oliveira ML: Uric acid changes in urine and plasma: an effective tool in screening for purine inborn errors of metabolism and other pathological conditions. J Inherit Metab Dis. 2007 Jun;30(3):295-309. Epub 2007 May 19. Pubmed: 17520339
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Steiner MC, Evans R, Deacon SJ, Singh SJ, Patel P, Fox J, Greenhaff PL, Morgan MD: Adenine nucleotide loss in the skeletal muscles during exercise in chronic obstructive pulmonary disease. Thorax. 2005 Nov;60(11):932-6. Epub 2005 Jul 29. Pubmed: 16055624
  • Terry KL, De Vivo I, Titus-Ernstoff L, Shih MC, Cramer DW: Androgen receptor cytosine, adenine, guanine repeats, and haplotypes in relation to ovarian cancer risk. Cancer Res. 2005 Jul 1;65(13):5974-81. Pubmed: 15994977
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Whitehead JW, Lee GP, Gharagozloo P, Hofer P, Gehrig A, Wintergerst P, Smyth D, McCoull W, Hachicha M, Patel A, Kyle DJ: 8-Substituted analogues of 3-(3-cyclopentyloxy-4-methoxy-benzyl)-8-isopropyl-adenine: highly potent and selective PDE4 inhibitors. J Med Chem. 2005 Feb 24;48(4):1237-43. Pubmed: 15715490
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference:Baddiley, J.; Lythgoe, B.; Todd, A. R. Synthesis of purine nucleosides. II. A new and convenient synthesis of adenine. Journal of the Chemical Society (1943), 386-7.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID16708
HMDB IDHMDB00034
Pubchem Compound ID190
Kegg IDC00147
ChemSpider ID185
WikipediaAdenine
BioCyc IDADENINE
EcoCyc IDADENINE
Ligand ExpoANE

Enzymes

General function:
Involved in hypoxanthine phosphoribosyltransferase activity
Specific function:
This enzyme acts exclusively on hypoxanthine; it does not act on guanine
Gene Name:
hpt
Uniprot ID:
P0A9M2
Molecular weight:
20115
Reactions
IMP + diphosphate = hypoxanthine + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in purine-nucleoside phosphorylase activity
Specific function:
Cleavage of guanosine or inosine to respective bases and sugar-1-phosphate molecules
Gene Name:
deoD
Uniprot ID:
P0ABP8
Molecular weight:
25950
Reactions
Purine nucleoside + phosphate = purine + alpha-D-ribose 1-phosphate.
General function:
Involved in catalytic activity
Specific function:
Involved in regulation of AMP concentrations
Gene Name:
amn
Uniprot ID:
P0AE12
Molecular weight:
53994
Reactions
AMP + H(2)O = D-ribose 5-phosphate + adenine.
General function:
Involved in adenosylhomocysteine nucleosidase activity
Specific function:
Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S- adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'-methylthioribose and S-ribosylhomocysteine, respectively. Can also use 5'-isobutylthioadenosine, 5'-n- butylthioadenosine, S-adenosyl-D-homocysteine, decarboxylated adenosylhomocysteine, deaminated adenosylhomocysteine and S-2-aza- adenosylhomocysteine as substrates
Gene Name:
mtnN
Uniprot ID:
P0AF12
Molecular weight:
24354
Reactions
S-adenosyl-L-homocysteine + H(2)O = S-(5-deoxy-D-ribos-5-yl)-L-homocysteine + adenine.
S-methyl-5'-thioadenosine + H(2)O = S-methyl-5-thio-D-ribose + adenine.
General function:
Involved in riboflavin synthase activity
Specific function:
Riboflavin synthase is a bifunctional enzyme complex catalyzing the formation of riboflavin from 5-amino-6-(1'-D)- ribityl-amino-2,4(1H,3H)-pyrimidinedione and L-3,4-dihydrohy-2- butanone-4-phosphate via 6,7-dimethyl-8-lumazine. The alpha subunit catalyzes the dismutation of 6,7-dimethyl-8-lumazine to riboflavin and 5-amino-6-(1'-D)-ribityl-amino-2,4(1H,3H)- pyrimidinedione
Gene Name:
ribE
Uniprot ID:
P0AFU8
Molecular weight:
23445
Reactions
2 6,7-dimethyl-8-(1-D-ribityl)lumazine = riboflavin + 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine.
General function:
Involved in hydrolase activity, hydrolyzing N-glycosyl compounds
Specific function:
Hydrolyzes both purine and pyrimidine ribonucleosides with a broad-substrate specificity with decreasing activity in the order uridine, xanthosine, inosine, adenosine, cytidine, guanosine
Gene Name:
rihC
Uniprot ID:
P22564
Molecular weight:
32560
General function:
Involved in adenine deaminase activity
Specific function:
Adenine + H(2)O = hypoxanthine + NH(3)
Gene Name:
ade
Uniprot ID:
P31441
Molecular weight:
63739
Reactions
Adenine + H(2)O = hypoxanthine + NH(3).
General function:
Involved in hydrolase activity, hydrolyzing N-glycosyl compounds
Specific function:
Hydrolyzes cytidine or uridine to ribose and cytosine or uracil, respectively. Has a clear preference for cytidine over uridine. Strictly specific for ribonucleosides. Has a low but significant activity for the purine nucleoside xanthosine
Gene Name:
rihB
Uniprot ID:
P33022
Molecular weight:
33748
Reactions
A pyrimidine nucleoside + H(2)O = D-ribose + a pyrimidine base.
General function:
Involved in adenine phosphoribosyltransferase activity
Specific function:
Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis
Gene Name:
apt
Uniprot ID:
P69503
Molecular weight:
19859
Reactions
AMP + diphosphate = adenine + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in ATP binding
Specific function:
Catalyzes the formation of 2-(5''-triphosphoribosyl)-3'- dephosphocoenzyme-A, the precursor of the prosthetic group of the holo-acyl carrier protein (gamma chain) of citrate lyase, from ATP and dephospho-CoA
Gene Name:
citG
Uniprot ID:
P77231
Molecular weight:
31644
Reactions
ATP + 3-dephospho-CoA = 2'-(5-triphosphoribosyl)-3'-dephospho-CoA + adenine.
General function:
Not Available
Specific function:
Dioxygenase that repairs alkylated DNA and RNA containing 3-methylcytosine or 1-methyladenine by oxidative demethylation. Has highest activity towards 3-methylcytosine. Has lower activity towards alkylated DNA containing ethenoadenine, and no detectable activity towards 1-methylguanine or 3-methylthymine. Accepts double-stranded and single-stranded substrates. Requires molecular oxygen, alpha-ketoglutarate and iron. Provides extensive resistance to alkylating agents such as MMS and DMS (SN2 agents), but not to MMNG and MNU (SN1 agents). Dioxygenase that repairs alkylated DNA and RNA containing 3-methylcytosine or 1-methyladenine by oxidative demethylation. Has highest activity towards 3-methylcytosine. Has lower activity towards alkylated DNA containing ethenoadenine, and no detectable activity towards 1-methylguanine or 3-methylthymine. Accepts double-stranded and single-stranded substrates. Requires molecular oxygen, alpha-ketoglutarate and iron. Provides extensive resistance to alkylating agents such as MMS and DMS (SN2 agents), but not to MMNG and MNU (SN1 agents).
Gene Name:
alkB
Uniprot ID:
P05050
Molecular weight:
Not Available
Reactions
DNA-base-CH(3) + 2-oxoglutarate + O(2) = DNA-base + formaldehyde + succinate + CO(2).
DNA-base-CH(3) + 2-oxoglutarate + O(2) = DNA-base + formaldehyde + succinate + CO(2).
General function:
Translation, ribosomal structure and biogenesis
Specific function:
Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA)
Gene Name:
queA
Uniprot ID:
P0A7F9
Molecular weight:
39430
Reactions
S-adenosylmethionine + 7-aminomethyl-7-deazaguanosine = methionine + adenine + epoxyqueuosine.
General function:
organic phosphonate catabolic process
Specific function:
Together with PhnG, PhnH and PhnI is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Gene Name:
phnL
Uniprot ID:
P16679
Molecular weight:
24705
Reactions
ATP + methylphosphonate = alpha-D-ribose 1-methylphosphonate 5-triphosphate + adenine
General function:
organic phosphonate catabolic process
Specific function:
Together with PhnG, PhnH and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate. PhnI alone has nucleosidase activity, catalyzing the hydrolysis of ATP or GTP forming alpha-D-ribose 5-triphosphate and adenine or guanine, respectively.
Gene Name:
phnI
Uniprot ID:
P16687
Molecular weight:
38852
Reactions
ATP + methylphosphonate = alpha-D-ribose 1-methylphosphonate 5-triphosphate + adenine
General function:
organic phosphonate catabolic process
Specific function:
Together with PhnG, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Gene Name:
phnH
Uniprot ID:
P16686
Molecular weight:
21027
Reactions
ATP + methylphosphonate = alpha-D-ribose 1-methylphosphonate 5-triphosphate + adenine
General function:
organic phosphonate transport
Specific function:
Together with PhnH, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Gene Name:
phnG
Uniprot ID:
P16685
Molecular weight:
16539
Reactions
ATP + methylphosphonate = alpha-D-ribose 1-methylphosphonate 5-triphosphate + adenine

Transporters

General function:
Involved in transporter activity
Specific function:
Specific, proton motive force-dependent high-affinity transporter for xanthine
Gene Name:
xanP
Uniprot ID:
P0AGM9
Molecular weight:
48868
General function:
Involved in transporter activity
Specific function:
High-affinity uptake of adenine
Gene Name:
purP
Uniprot ID:
P31466
Molecular weight:
46865
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368
General function:
organic phosphonate transport
Specific function:
Together with PhnH, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Gene Name:
phnG
Uniprot ID:
P16685
Molecular weight:
16539
Reactions
ATP + methylphosphonate = alpha-D-ribose 1-methylphosphonate 5-triphosphate + adenine