Record Information
Version2.0
Creation Date2012-07-30 14:55:06 -0600
Update Date2015-06-03 17:20:59 -0600
Secondary Accession Numbers
  • ECMDB21245
Identification
Name:Menaquinol 8
Description:Menaquinol 8 is a polyprenylhydroquinone having a an octaprenyl moiety at position 2 and a methyl group at position 3. It is a substrate for Dimethyl sulfoxide reductase (dmsA). This enzyme catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS) using the following reaction: Dimethylsulfide + menaquinone + H2O = dimethylsulfoxide + menaquinol. DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. This enzyme allows E.coli to grow anaerobically on DMSO as respiratory oxidant. Menaquinol 8 is generated by Ubiquinone/menaquinone biosynthesis methyltransferase (ubiE). This enzyme is required for the conversion of demethylmenaquinone (DMKH2) to menaquinone (MKH2) and has the following catalytic activity: A demethylmenaquinone + S-adenosyl-L-methionine = a menaquinol + S-adenosyl-L-homocysteine.
Structure
Thumb
Synonyms:
  • MKH2-8
  • Reduced menaquinone-8
Chemical Formula:C51H74O2
Weight:Average: 719.1321
Monoisotopic: 718.568881612
InChI Key:OIEZRVBFVPGODT-WQWYCSGDSA-N
InChI:InChI=1S/C51H74O2/c1-38(2)20-13-21-39(3)22-14-23-40(4)24-15-25-41(5)26-16-27-42(6)28-17-29-43(7)30-18-31-44(8)32-19-33-45(9)36-37-47-46(10)50(52)48-34-11-12-35-49(48)51(47)53/h11-12,20,22,24,26,28,30,32,34-36,52-53H,13-19,21,23,25,27,29,31,33,37H2,1-10H3/b39-22+,40-24+,41-26+,42-28+,43-30+,44-32+,45-36+
CAS number:Not Available
IUPAC Name:2-methyl-3-[(2E,6E,10E,14E,18E,22E,26E)-3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaen-1-yl]naphthalene-1,4-diol
Traditional IUPAC Name:menaquinol-8
SMILES:[H]\C(CC\C(C)=C(/[H])CC\C(C)=C(/[H])CC\C(C)=C(/[H])CC\C(C)=C(/[H])CC\C(C)=C(/[H])CC\C(C)=C(/[H])CC1=C(O)C2=CC=CC=C2C(O)=C1C)=C(\C)CCC=C(C)C
Chemical Taxonomy
DescriptionThis compound belongs to the class of chemical entities known as polyprenylphenols. These are compounds containing a polyisoprene chain attached to a phenol group.
KingdomChemical entities
Super ClassOrganic compounds
ClassLipids and lipid-like molecules
Sub ClassPrenol lipids
Direct ParentPolyprenylphenols
Alternative Parents
Substituents
  • Tetraterpenoid
  • Polyprenylphenol
  • Prenylbenzoquinol
  • 1-naphthol
  • Naphthalene
  • Hydroquinone
  • Benzenoid
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aromatic homopolycyclic compound
Molecular FrameworkAromatic homopolycyclic compounds
External Descriptors
Physical Properties
State:Not Available
Charge:0
Melting point:Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility0.000233 mg/mLALOGPS
logP9.92ALOGPS
logP16.22ChemAxon
logS-6.5ALOGPS
pKa (Strongest Acidic)9.38ChemAxon
pKa (Strongest Basic)-6ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area40.46 Å2ChemAxon
Rotatable Bond Count23ChemAxon
Refractivity242.37 m3·mol-1ChemAxon
Polarizability93.44 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Membrane
Reactions:
Hydrogen ion + Menaquinol 8 + Trimethylamine N-Oxide > Water + Menaquinone 8 + Trimethylamine
2 Hydrogen ion + Hydrogen (gas) + Menaquinone 8 > Menaquinol 8 +2 Hydrogen ion
Menaquinol 8 + Hydrogen ion + Trimethylamine N-Oxide > Menaquinone 8 + Water + Trimethylamine
2 Hydrogen ion + Menaquinol 8 + Nitrate > Water + Menaquinone 8 + Nitrite +2 Hydrogen ion
2 Hydrogen ion + Menaquinone 8 + Formic acid > Menaquinol 8 + Carbon dioxide + Hydrogen ion
Dimethyl sulfoxide + Menaquinol 8 > Dimethyl sulfide + Water + Menaquinone 8
Menaquinol 8 + Nitrate > Menaquinone 8 + Water + Nitrite
2 Hydrogen ion + Menaquinol 8 + Oxygen > Water + Menaquinone 8 +2 Hydrogen ion
Menaquinol 8 + Selenocystathionine > Water + Menaquinone 8 + Selenite
Menaquinol 8 + Dimethyl sulfoxide > Menaquinone 8 + Dimethyl sulfide + Water
Glycerol 3-phosphate + Menaquinone 8 > Dihydroxyacetone phosphate + Menaquinol 8
4 Hydrogen ion + Menaquinone 8 + NADH > Menaquinol 8 + NAD +3 Hydrogen ion
Glycolic acid + Menaquinone 8 > Glyoxylic acid + Menaquinol 8
L-Lactic acid + Menaquinone 8 > Menaquinol 8 + Pyruvic acid
Menaquinone 8 + periplasmic protein disulfide isomerase I (reduced) > Menaquinol 8 + periplasmic protein disulfide isomerase I (oxidized)
3 Menaquinol 8 + 2 Hydrogen ion + Nitrite >3 Menaquinone 8 +2 Water + Ammonium
Fumaric acid + Menaquinol 8 > Menaquinone 8 + Succinic acid
4,5-Dihydroorotic acid + Menaquinone 8 > Menaquinol 8 + Orotic acid
Hydrogen ion + Menaquinone 8 + NADH > Menaquinol 8 + NAD
L-Malic acid + Menaquinone 8 > Menaquinol 8 + Oxalacetic acid
L-Aspartic acid + Menaquinone 8 > Hydrogen ion + Iminoaspartic acid + Menaquinol 8
Hydrogen ion + Menaquinone 8 + NADPH > Menaquinol 8 + NADP
Menaquinol 8 + 2 Oxygen >2 Hydrogen ion + Menaquinone 8 +2 Superoxide anion
2-Demethylmenaquinol 8 + S-Adenosylmethionine > S-Adenosylhomocysteine + Hydrogen ion + Menaquinol 8
2-Demethylmenaquinol 8 + S-Adenosylmethionine > Menaquinol 8 + Hydrogen ion + S-Adenosylhomocysteine

SMPDB Pathways:
Menaquinol biosythesisPW001897 Pw001897Pw001897 greyscalePw001897 simple
N-oxide electron transferPW001889 Pw001889Pw001889 greyscalePw001889 simple
dimethyl sulfoxide electron transferPW001892 Pw001892Pw001892 greyscalePw001892 simple
glycerol metabolismPW000914 Pw000914Pw000914 greyscalePw000914 simple
glycerol metabolism IIPW000915 Pw000915Pw000915 greyscalePw000915 simple
glycerol metabolism III (sn-glycero-3-phosphoethanolamine)PW000916 Pw000916Pw000916 greyscalePw000916 simple
glycerol metabolism IV (glycerophosphoglycerol)PW000917 Pw000917Pw000917 greyscalePw000917 simple
glycerol metabolism V (glycerophosphoserine)PW000918 Pw000918Pw000918 greyscalePw000918 simple
KEGG Pathways:Not Available
EcoCyc Pathways:
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-0322233900-078712e5ae1a120e9bb4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-003f-0659682000-b17f6a9f6282acdc780aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-00ls-1579781000-2f32691d12e0c6589b72View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0000000900-7cce8314869d82157486View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-014i-0100001900-d530f7b545c4e49db453View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0uk9-0912141700-dbc44459a9094ccd680fView in MoNA
References
References:
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
Synthesis Reference:Not Available
Material Safety Data Sheet (MSDS)Not Available
External Links:
ResourceLink
CHEBI ID61684
HMDB IDNot Available
Pubchem Compound ID45479636
Kegg IDNot Available
ChemSpider ID26332321
Wikipedia IDNot Available
BioCyc IDREDUCED-MENAQUINONE
EcoCyc IDREDUCED-MENAQUINONE

Enzymes

General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
frdA
Uniprot ID:
P00363
Molecular weight:
65971
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in oxidation-reduction process
Specific function:
Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation
Gene Name:
ndh
Uniprot ID:
P00393
Molecular weight:
47358
Reactions
NADH + acceptor = NAD(+) + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction
Gene Name:
narG
Uniprot ID:
P09152
Molecular weight:
140489
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in catalytic activity
Specific function:
(S)-dihydroorotate + a quinone = orotate + a quinol
Gene Name:
pyrD
Uniprot ID:
P0A7E1
Molecular weight:
36774
Reactions
(S)-dihydroorotate + a quinone = orotate + a quinol.
General function:
Energy production and conversion
Specific function:
Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane
Gene Name:
frdC
Uniprot ID:
P0A8Q0
Molecular weight:
15015
General function:
Involved in fumarate metabolic process
Specific function:
Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane
Gene Name:
frdD
Uniprot ID:
P0A8Q3
Molecular weight:
13107
General function:
Involved in iron-sulfur cluster binding
Specific function:
Electron transfer protein; may also function as the membrane anchor for the glpAB dimer
Gene Name:
glpC
Uniprot ID:
P0A996
Molecular weight:
44108
General function:
Involved in oxidoreductase activity
Specific function:
Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor
Gene Name:
glpA
Uniprot ID:
P0A9C0
Molecular weight:
58958
Reactions
sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol.
General function:
Involved in electron carrier activity
Specific function:
Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds
Gene Name:
ynfG
Uniprot ID:
P0AAJ1
Molecular weight:
22752
General function:
Involved in electron carrier activity
Specific function:
Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit
Gene Name:
fdnH
Uniprot ID:
P0AAJ3
Molecular weight:
32239
General function:
Involved in electron carrier activity
Specific function:
Allows to use formate as major electron donor during aerobic respiration. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron- sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit
Gene Name:
fdoH
Uniprot ID:
P0AAJ5
Molecular weight:
33100
General function:
Involved in nitrogen compound metabolic process
Specific function:
Plays a role in nitrite reduction
Gene Name:
nrfA
Uniprot ID:
P0ABK9
Molecular weight:
53703
Reactions
NH(3) + 2 H(2)O + 6 ferricytochrome c = nitrite + 6 ferrocytochrome c + 7 H(+).
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
frdB
Uniprot ID:
P0AC47
Molecular weight:
27123
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in nickel cation binding
Specific function:
This is one of three E.coli hydrogenases synthesized in response to different physiological conditions. HYD1 is believed to have a role in hydrogen cycling during fermentative growth
Gene Name:
hyaB
Uniprot ID:
P0ACD8
Molecular weight:
66253
Reactions
H(2) + A = AH(2).
General function:
Involved in nickel cation binding
Specific function:
This is one of three E.coli hydrogenases synthesized in response to different physiological conditions. HYD2 is involved in hydrogen uptake
Gene Name:
hybC
Uniprot ID:
P0ACE0
Molecular weight:
62491
Reactions
H(2) + A = AH(2).
General function:
Involved in oxidoreductase activity
Specific function:
Can oxidize menadiol to menadione
Gene Name:
ygiN
Uniprot ID:
P0ADU2
Molecular weight:
11532
General function:
Involved in respiratory electron transport chain
Specific function:
Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. Subunit gamma is the cytochrome b556(FDN) component of the formate dehydrogenase
Gene Name:
fdnI
Uniprot ID:
P0AEK7
Molecular weight:
25368
General function:
Involved in respiratory electron transport chain
Specific function:
Allows to use formate as major electron donor during aerobic respiration. Subunit gamma is probably the cytochrome b556(FDO) component of the formate dehydrogenase
Gene Name:
fdoI
Uniprot ID:
P0AEL0
Molecular weight:
24606
General function:
Involved in catalytic activity
Specific function:
Specific function unknown
Gene Name:
glcD
Uniprot ID:
P0AEP9
Molecular weight:
53811
General function:
Involved in nitrate reductase activity
Specific function:
This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit
Gene Name:
narV
Uniprot ID:
P0AF32
Molecular weight:
26018
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoA
Uniprot ID:
P0AFC3
Molecular weight:
16457
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoB
Uniprot ID:
P0AFC7
Molecular weight:
25056
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoE
Uniprot ID:
P0AFD1
Molecular weight:
18590
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidation-reduction process
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone
Gene Name:
nuoH
Uniprot ID:
P0AFD4
Molecular weight:
36219
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoI
Uniprot ID:
P0AFD6
Molecular weight:
20538
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoJ
Uniprot ID:
P0AFE0
Molecular weight:
19874
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
There are 2 NADH dehydrogenases in E.coli, however only this complex is able to use dNADH (reduced nicotinamide hypoxanthine dinucleotide, deamino-NADH) and dNADH-DB (dimethoxy- 5-methyl-6-decyl-1,4-benzoquinone) as substrates
Gene Name:
nuoK
Uniprot ID:
P0AFE4
Molecular weight:
10845
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoM
Uniprot ID:
P0AFE8
Molecular weight:
56524
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoN
Uniprot ID:
P0AFF0
Molecular weight:
52044
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
Catalyzes the oxidation of L-aspartate to iminoaspartate
Gene Name:
nadB
Uniprot ID:
P10902
Molecular weight:
60337
Reactions
L-aspartate + O(2) = iminosuccinate + H(2)O(2).
General function:
Involved in iron-sulfur cluster binding
Specific function:
The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit
Gene Name:
narH
Uniprot ID:
P11349
Molecular weight:
58066
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in nitrate reductase activity
Specific function:
The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit
Gene Name:
narI
Uniprot ID:
P11350
Molecular weight:
25497
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in electron carrier activity
Specific function:
Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor
Gene Name:
glpB
Uniprot ID:
P13033
Molecular weight:
45357
Reactions
sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol.
General function:
Involved in dimethyl sulfoxide reductase activity
Specific function:
Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. Allows E.coli to grow anaerobically on Me(2)SO as respiratory oxidant
Gene Name:
dmsA
Uniprot ID:
P18775
Molecular weight:
90398
Reactions
Dimethylsulfide + menaquinone + H(2)O = dimethylsulfoxide + menaquinol.
General function:
Involved in electron carrier activity
Specific function:
Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds
Gene Name:
dmsB
Uniprot ID:
P18776
Molecular weight:
22869
General function:
Involved in unfolded protein binding
Specific function:
Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 2
Gene Name:
narW
Uniprot ID:
P19317
Molecular weight:
26160
General function:
Involved in iron-sulfur cluster binding
Specific function:
This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit
Gene Name:
narY
Uniprot ID:
P19318
Molecular weight:
58557
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
The alpha chain is the actual site of nitrate reduction
Gene Name:
narZ
Uniprot ID:
P19319
Molecular weight:
140226
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in formate dehydrogenase (NAD+) activity
Specific function:
Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The alpha subunit forms the active site
Gene Name:
fdnG
Uniprot ID:
P24183
Molecular weight:
112963
Reactions
Formate + NAD(+) = CO(2) + NADH.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoF
Uniprot ID:
P31979
Molecular weight:
49292
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in formate dehydrogenase (NAD+) activity
Specific function:
Allows to use formate as major electron donor during aerobic respiration. Subunit alpha possibly forms the active site
Gene Name:
fdoG
Uniprot ID:
P32176
Molecular weight:
112549
Reactions
Formate + NAD(+) = CO(2) + NADH.
General function:
Involved in catalytic activity
Specific function:
(S)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H(+)
Gene Name:
lldD
Uniprot ID:
P33232
Molecular weight:
42728
Reactions
(S)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H(+).
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoC
Uniprot ID:
P33599
Molecular weight:
68236
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoG
Uniprot ID:
P33602
Molecular weight:
100298
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoL
Uniprot ID:
P33607
Molecular weight:
66438
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity
Specific function:
Catalytic subunit of the periplasmic nitrate reductase (NAP). Only expressed at high levels during aerobic growth. NapAB complex receives electrons from the membrane-anchored tetraheme protein napC, thus allowing electron flow between membrane and periplasm. Essential function for nitrate assimilation and may have a role in anaerobic metabolism
Gene Name:
napA
Uniprot ID:
P33937
Molecular weight:
93041
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in malate dehydrogenase (quinone) activity
Specific function:
(S)-malate + a quinone = oxaloacetate + reduced quinone
Gene Name:
mqo
Uniprot ID:
P33940
Molecular weight:
60229
Reactions
(S)-malate + a quinone = oxaloacetate + reduced quinone.
General function:
Involved in iron-sulfur cluster binding
Specific function:
Specific function unknown
Gene Name:
glcF
Uniprot ID:
P52074
Molecular weight:
45110
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
This is one of three E.coli hydrogenases synthesized in response to different physiological conditions. HYD1 is believed to have a role in hydrogen cycling during fermentative growth
Gene Name:
hyaA
Uniprot ID:
P69739
Molecular weight:
40681
Reactions
H(2) + A = AH(2).
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
This is one of three E.coli hydrogenases synthesized in response to different physiological conditions. HYD2 is involved in hydrogen uptake
Gene Name:
hybO
Uniprot ID:
P69741
Molecular weight:
39652
Reactions
H(2) + A = AH(2).
General function:
Involved in dimethyl sulfoxide reductase activity
Specific function:
Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds
Gene Name:
ynfE
Uniprot ID:
P77374
Molecular weight:
89779
General function:
Involved in dimethyl sulfoxide reductase activity
Specific function:
Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds
Gene Name:
ynfF
Uniprot ID:
P77783
Molecular weight:
89986
General function:
Involved in oxidoreductase activity
Specific function:
Reduces trimethylamine-N-oxide (TMAO) into trimethylamine; an anaerobic reaction coupled to energy-yielding reactions. Can also reduce other N- and S-oxide compounds such as 4-methylmorpholine-N-oxide and biotin sulfoxide (BSO), but with a lower catalytic efficiency
Gene Name:
torZ
Uniprot ID:
P46923
Molecular weight:
88964
Reactions
Trimethylamine + 2 (ferricytochrome c)-subunit + H(2)O = trimethylamine N-oxide + 2 (ferrocytochrome c)-subunit + 2 H(+).
General function:
Involved in coenzyme binding
Specific function:
Specific function unknown
Gene Name:
mdaB
Uniprot ID:
P0AEY5
Molecular weight:
21891
General function:
Energy production and conversion
Specific function:
Specific function unknown
Gene Name:
ykgE
Uniprot ID:
P77252
Molecular weight:
26004
General function:
Involved in iron ion binding
Specific function:
Part of the anaerobic respiratory chain of trimethylamine-N-oxide reductase torZ. Required for electron transfer to the torZ terminal enzyme
Gene Name:
torY
Uniprot ID:
P52005
Molecular weight:
40286
General function:
Involved in anaerobic electron transport chain
Specific function:
Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. DmsC anchors the dmsAB dimer to the membrane and stabilizes it
Gene Name:
dmsC
Uniprot ID:
P18777
Molecular weight:
30826
General function:
Involved in electron carrier activity
Specific function:
Probable b-type cytochrome
Gene Name:
hyaC
Uniprot ID:
P0AAM1
Molecular weight:
27597
General function:
Unknown function
Specific function:
Specific function unknown
Gene Name:
ykgG
Uniprot ID:
P77433
Molecular weight:
25212
General function:
Involved in catalytic activity
Specific function:
Specific function unknown
Gene Name:
glcE
Uniprot ID:
P52073
Molecular weight:
38361
General function:
Involved in protein disulfide oxidoreductase activity
Specific function:
Required for disulfide bond formation in some periplasmic proteins such as phoA or ompA. Acts by transferring its disulfide bond to other proteins and is reduced in the process. DsbA is reoxidized by dsbB. It is required for pilus biogenesis
Gene Name:
dsbA
Uniprot ID:
P0AEG4
Molecular weight:
23104
General function:
Involved in electron carrier activity
Specific function:
Participates in the periplasmic electron-transferring activity of hydrogenase 2 during its catalytic turnover
Gene Name:
hybA
Uniprot ID:
P0AAJ8
Molecular weight:
36003
General function:
Involved in lactate oxidation
Specific function:
Specific function unknown
Gene Name:
ykgF
Uniprot ID:
P77536
Molecular weight:
53052
General function:
Involved in oxidation-reduction process
Specific function:
Cytochrome oxidase subunit
Gene Name:
appB
Uniprot ID:
P26458
Molecular weight:
42423
General function:
Involved in oxidoreductase activity
Specific function:
Reduces trimethylamine-N-oxide (TMAO) into trimethylamine; an anaerobic reaction coupled to energy-yielding reactions
Gene Name:
torA
Uniprot ID:
P33225
Molecular weight:
94455
Reactions
Trimethylamine + 2 (ferricytochrome c)-subunit + H(2)O = trimethylamine N-oxide + 2 (ferrocytochrome c)-subunit + 2 H(+).
General function:
Inorganic ion transport and metabolism
Specific function:
Probably involved in the transfer of electrons from the quinone pool to the type-c cytochromes
Gene Name:
nrfD
Uniprot ID:
P32709
Molecular weight:
35042
General function:
Involved in metal ion binding
Specific function:
Probable b-type cytochrome
Gene Name:
hybB
Uniprot ID:
P37180
Molecular weight:
43602
General function:
Energy production and conversion
Specific function:
Cytochrome oxidase subunit
Gene Name:
appC
Uniprot ID:
P26459
Molecular weight:
57919
General function:
Involved in iron ion binding
Specific function:
Part of the anaerobic respiratory chain of trimethylamine-N-oxide reductase torA. Acts by transferring electrons from the membranous menaquinones to torA. This transfer probably involves an electron transfer pathway from menaquinones to the N-terminal domain of torC, then from the N-terminus to the C-terminus, and finally to torA. TorC apocytochrome negatively autoregulates the torCAD operon probably by inhibiting the torS kinase activity
Gene Name:
torC
Uniprot ID:
P33226
Molecular weight:
43606
General function:
Involved in electron carrier activity
Specific function:
Probably involved in the transfer of electrons from the quinone pool to the type-c cytochromes
Gene Name:
nrfC
Uniprot ID:
P0AAK7
Molecular weight:
24567
General function:
Involved in methyltransferase activity
Specific function:
Methyltransferase required for the conversion of dimethylmenaquinone (DMKH2) to menaquinone (MKH2) and the conversion of 2-polyprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) to 2-polyprenyl-3-methyl-6-methoxy-1,4-benzoquinol (DMQH2)
Gene Name:
ubiE
Uniprot ID:
P0A887
Molecular weight:
28073
Reactions
A demethylmenaquinone + S-adenosyl-L-methionine = a menaquinol + S-adenosyl-L-homocysteine.
S-adenosyl-L-methionine + 2-methoxy-6-all-trans-polyprenyl-1,4-benzoquinol = S-adenosyl-L-homocysteine + 6-methoxy-3-methyl-2-all-trans-polyprenyl-1,4-benzoquinol.
General function:
Involved in heme binding
Specific function:
Plays a role in nitrite reduction
Gene Name:
nrfB
Uniprot ID:
P0ABL1
Molecular weight:
20714
General function:
Energy production and conversion
Specific function:
Small subunit of the periplasmic nitrate reductase (NAP). Only expressed at high levels during aerobic growth. NapAB complex receives electrons from the membrane-anchored tetraheme napC protein, thus allowing electron flow between membrane and periplasm. Essential function for nitrate assimilation and may have a role in anaerobic metabolism
Gene Name:
napB
Uniprot ID:
P0ABL3
Molecular weight:
16297
General function:
Involved in anaerobic electron transport chain
Specific function:
Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. The C subunit anchors the other two subunits to the membrane and stabilize the catalytic subunits
Gene Name:
ynfH
Uniprot ID:
P76173
Molecular weight:
30523
General function:
Involved in protein disulfide oxidoreductase activity
Specific function:
Required for disulfide bond formation in some periplasmic proteins such as phoA or ompA. Acts by oxidizing the dsbA protein
Gene Name:
dsbB
Uniprot ID:
P0A6M2
Molecular weight:
20142
General function:
Involved in heme binding
Specific function:
Mediates electron flow from quinones to the napAB complex
Gene Name:
napC
Uniprot ID:
P0ABL5
Molecular weight:
23100
General function:
Involved in unfolded protein binding
Specific function:
Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with the NarI subunit on the membrane
Gene Name:
narJ
Uniprot ID:
P0AF26
Molecular weight:
26449