Record Information
Creation Date2012-05-31 14:54:13 -0600
Update Date2015-09-13 12:56:14 -0600
Secondary Accession Numbers
  • ECMDB21007
DescriptionAllothreonine is the substrate of the enzyme Serine hydroxymethyltransferase1 (SHMT, EC SHMT uses pyridoxal 5'-phosphate (PLP) and tetrahydropteroylglutamate (H4PteGlu) as coenzymes and catalyzes the reversible interconversion of serine and glycine. In addition to these physiological reactions, SHMT also catalyzes, in the absence of H4PteGlu, the retroaldol cleavage of several 3-hydroxyamino acids, such as allothreonine.
  • (2S,3S)-2-amino-3-hydroxybutanoate
  • (2S,3S)-2-amino-3-hydroxybutanoic acid
  • Allo-L-threonine
  • D-Allothreonine
  • L-Allo-Threonine
Chemical Formula:C4H9NO3
Weight:Average: 119.1192
Monoisotopic: 119.058243159
CAS number:24830-94-2
IUPAC Name:(2S,3S)-2-amino-3-hydroxybutanoic acid
Traditional IUPAC Name:L-allothreonine
Chemical Taxonomy
Description belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentL-alpha-amino acids
Alternative Parents
  • L-alpha-amino acid
  • Beta-hydroxy acid
  • Short-chain hydroxy acid
  • Hydroxy acid
  • Fatty acid
  • Amino acid
  • Secondary alcohol
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Alcohol
  • Hydrocarbon derivative
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Primary aliphatic amine
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Organic nitrogen compound
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
Melting point:256 °C
Experimental Properties:
Predicted Properties
Water Solubility477 g/LALOGPS
pKa (Strongest Acidic)2.21ChemAxon
pKa (Strongest Basic)9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area83.55 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity26.46 m³·mol⁻¹ChemAxon
Polarizability11.08 ųChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
SMPDB Pathways:
Pyrimidine metabolismPW000942 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:Not Available
Not Available
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-00xr-8940000000-61137c228f750ff5411eView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00xr-8940000000-61137c228f750ff5411eView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0gb9-0920000000-edebe0b2d1f6b0331fd8View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0900000000-6a1aac793b872dd50191View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-00dl-9000000000-a05d200d324c3242c239View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-0002-7910000000-e87d0898bf497885fb9fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-014i-1900000000-363df736fd62d53cc4dbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-00di-9100000000-7f4010640f9aaa91fc32View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-00di-9000000000-b74fb2510f41c62a6d3eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-00di-9000000000-e4e5e42d8f9c5a7e2499View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-00di-3900000000-3af5982aae7c0d1d4c1dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-00di-9100000000-96f9fd8a735417bb1ac5View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-0ab9-9000000000-eaa990f46fd8a493c097View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-0a4i-9000000000-105c4ce290165725b91eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-0a4i-9000000000-b63cc65df0fddbb42eb6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - CE-ESI-TOF (CE-system connected to 6210 Time-of-Flight MS, Agilent) , Positivesplash10-00di-0900000000-cc2f28c096c87aa9d274View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-00di-9400000000-c73aeffbd76d76ccd312View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-0fk9-9700000000-af60cc91d30ce48f55f0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-00xr-9500000000-dd28c7e04ef0ceb1e7bbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-00xr-9500000000-b69e5e49d69cc04d88f7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-014i-1900000000-363df736fd62d53cc4dbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-00di-9100000000-7f4010640f9aaa91fc32View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-00di-9000000000-b74fb2510f41c62a6d3eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-00di-9000000000-e4e5e42d8f9c5a7e2499View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-00xr-9500000000-dd28c7e04ef0ceb1e7bbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0uk9-6900000000-d30fcc60bda11aeb88b4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0ab9-9200000000-182ac9ea6ada1c0a3a85View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4i-9000000000-95f5b00b8a7eea104a34View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-01b9-6900000000-c89f1ad4eeed98ad609eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0fk9-9400000000-4018f60617aa408e59aaView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-05fr-9000000000-4dd50d3bdda9c01c9220View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
  • Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest. 1995 Mar;95(3):1281-7. Pubmed: 7883976
  • Brancati F, Valente EM, Davies NP, Sarkozy A, Sweeney MG, LoMonaco M, Pizzuti A, Hanna MG, Dallapiccola B: Severe infantile hyperkalaemic periodic paralysis and paramyotonia congenita: broadening the clinical spectrum associated with the T704M mutation in SCN4A. J Neurol Neurosurg Psychiatry. 2003 Sep;74(9):1339-41. Pubmed: 12933953
  • Contestabile R, Angelaccio S, Bossa F, Wright HT, Scarsdale N, Kazanina G, Schirch V: Role of tyrosine 65 in the mechanism of serine hydroxymethyltransferase. Biochemistry. 2000 Jun 27;39(25):7492-500. Pubmed: 10858298
  • Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD: Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc. 2006 Apr;38(4):667-74. Pubmed: 16679981
  • Farhana L, Dawson MI, Huang Y, Zhang Y, Rishi AK, Reddy KB, Freeman RS, Fontana JA: Apoptosis signaling by the novel compound 3-Cl-AHPC involves increased EGFR proteolysis and accompanying decreased phosphatidylinositol 3-kinase and AKT kinase activities. Oncogene. 2004 Mar 11;23(10):1874-84. Pubmed: 14981538
  • Fiehn O, Kopka J, Trethewey RN, Willmitzer L: Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem. 2000 Aug 1;72(15):3573-80. Pubmed: 10952545
  • Greeve J, Altkemper I, Dieterich JH, Greten H, Windler E: Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res. 1993 Aug;34(8):1367-83. Pubmed: 8409768
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Le Floc'h N, Obled C, Seve B: In vivo threonine oxidation rate is dependent on threonine dietary supply in growing pigs fed low to adequate levels. J Nutr. 1995 Oct;125(10):2550-62. Pubmed: 7562090
  • Martini C, Trincavelli ML, Tuscano D, Carmassi C, Ciapparelli A, Lucacchini A, Cassano GB, Dell'Osso L: Serotonin-mediated phosphorylation of extracellular regulated kinases in platelets of patients with panic disorder versus controls. Neurochem Int. 2004 Jun;44(8):627-39. Pubmed: 15016478
  • Meyer W, Poehling HM, Neurand K: Intraepidermal distribution of free amino acids in porcine skin. J Dermatol Sci. 1991 Sep;2(5):383-92. Pubmed: 1742249
  • Nanda N, Bao M, Lin H, Clauser K, Komuves L, Quertermous T, Conley PB, Phillips DR, Hart MJ: Platelet endothelial aggregation receptor 1 (PEAR1), a novel epidermal growth factor repeat-containing transmembrane receptor, participates in platelet contact-induced activation. J Biol Chem. 2005 Jul 1;280(26):24680-9. Epub 2005 Apr 25. Pubmed: 15851471
  • Parimi PS, Gruca LL, Kalhan SC: Metabolism of threonine in newborn infants. Am J Physiol Endocrinol Metab. 2005 Dec;289(6):E981-5. Epub 2005 Jul 19. Pubmed: 16030066
  • Persson B, Zigler JS Jr, Jornvall H: A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. Eur J Biochem. 1994 Nov 15;226(1):15-22. Pubmed: 7957243
  • Saitoh T, Takemura S, Ueda K, Hosoya H, Nagayama M, Haga H, Kawabata K, Yamagishi A, Takahashi M: Differential localization of non-muscle myosin II isoforms and phosphorylated regulatory light chains in human MRC-5 fibroblasts. FEBS Lett. 2001 Dec 14;509(3):365-9. Pubmed: 11749957
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Wishart MJ, Denu JM, Williams JA, Dixon JE: A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem. 1995 Nov 10;270(45):26782-5. Pubmed: 7592916
Synthesis Reference:Shiraiwa, Tadashi; Fukuda, Keiji; Kubo, Motoki. Preparation of optically active allothreonine via optical resolution by replacing crystallization. Chemical & Pharmaceutical Bulletin (2002), 50(2), 287-291.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
Pubchem Compound ID99289
Kegg IDC05519
ChemSpider ID89699
Wikipedia IDThreonine
Ligand ExpoALO


General function:
Involved in catalytic activity
Specific function:
Interconversion of serine and glycine
Gene Name:
Uniprot ID:
Molecular weight:
5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.
General function:
Involved in lyase activity
Specific function:
Catalyzes the cleavage of L-allo-threonine and L- threonine to glycine and acetaldehyde. L-threo-phenylserine and L- erythro-phenylserine are also good substrates
Gene Name:
Uniprot ID:
Molecular weight:
L-threonine = glycine + acetaldehyde.
L-allo-threonine = glycine + acetaldehyde.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADP-dependent oxidation of L-allo- threonine to L-2-amino-3-keto-butyrate, which is spontaneously decarboxylated into aminoacetone. Also acts on L-serine, D-serine, D-threonine, D-3-hydroxyisobutyrate, L-3-hydroxyisobutyrate, D- glycerate and L-glycerate
Gene Name:
Uniprot ID:
Molecular weight:
3-hydroxypropanoate + NADP(+) = 3-oxopropanoate + NADPH.