Record Information
Version2.0
Creation Date2012-05-31 14:07:52 -0600
Update Date2015-09-13 12:56:14 -0600
Secondary Accession Numbers
  • ECMDB06236
Identification
Name:Phenylacetaldehyde
Description:Phenylacetaldehyde is one important oxidation-related aldehyde. Exposure to styrene gives phenylacetaldehyde as a secondary metabolite. Styrene has been implicated as reproductive toxicant, neurotoxicant, or carcinogen in vivo or in vitro. Phenylacetaldehyde could be formed by diverse thermal reactions during the cooking process together with C8 compounds is identified as a major aroma- active compound in cooked pine mushroom. Phenylacetaldehyde is readily oxidized to phenylacetic acid. (PMID: 16910727, 7818768, 15606130)
Structure
Thumb
Synonyms:
  • .alpha.-toluic aldehyde
  • 1-Oxo-2-phenylethane
  • 2-Phenylacetaldehyde
  • 2-Phenylethanal
  • A-Phenylacetaldehyde
  • A-Tolualdehyde
  • A-Toluic aldehyde
  • Alpha-Phenylacetaldehyde
  • Alpha-Tolualdehyde
  • Alpha-Toluic aldehyde
  • Benzenacetaldehyde
  • Benzeneacetaldehyde
  • Benzylcarboxaldehyde
  • FEMA No. 2974
  • Hyacinthin
  • Oxophenylethane
  • Phenacetaldehyde
  • Phenyl-Acetaldehyde
  • Phenylacetaldehyde
  • Phenylacetic aldehyde
  • Phenylethanal
  • α-Phenylacetaldehyde
  • α-Tolualdehyde
  • α-Toluic aldehyde
Chemical Formula:C8H8O
Weight:Average: 120.1485
Monoisotopic: 120.057514878
InChI Key:DTUQWGWMVIHBKE-UHFFFAOYSA-N
InChI:InChI=1S/C8H8O/c9-7-6-8-4-2-1-3-5-8/h1-5,7H,6H2
CAS number:122-78-1
IUPAC Name:2-phenylacetaldehyde
Traditional IUPAC Name:phenylacetaldehyde
SMILES:O=CCC1=CC=CC=C1
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as phenylacetaldehydes. These are compounds containing a phenylacetaldehyde moiety, which consists of a phenyl group substituted at the second position by an acetalydehyde.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassPhenylacetaldehydes
Direct ParentPhenylacetaldehydes
Alternative Parents
Substituents
  • Phenylacetaldehyde
  • Alpha-hydrogen aldehyde
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aldehyde
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:0
Melting point:120.5-121.5 °C
Experimental Properties:
PropertyValueSource
LogP:1.78 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility2.08 g/LALOGPS
logP1.75ALOGPS
logP1.45ChemAxon
logS-1.8ALOGPS
pKa (Strongest Acidic)14.98ChemAxon
pKa (Strongest Basic)-7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity36.44 m³·mol⁻¹ChemAxon
Polarizability12.91 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
Phenylalanine metabolismPW000921 ThumbThumb?image type=greyscaleThumb?image type=simple
Phenylethylamine metabolismPW002027 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00kf-9400000000-bec6e42b47ad1306960fView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-014l-9700000000-152bdd5b77d6af9657ecView in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0006-9000000000-d37cbef4100302e951deView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00kf-9400000000-bec6e42b47ad1306960fView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-014l-9700000000-152bdd5b77d6af9657ecView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00kf-9400000000-e75d2f0bf82f16a80388View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00kf-9400000000-32573b7f6ab690a27e3eView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0006-5900000000-21e85148d15d190553c4View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0006-5900000000-4471e0916a32cf4df7acView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0006-5900000000-650012e69d0a89a2fd4aView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0006-5900000000-c80b65e383f833509e0fView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9200000000-b3923f5fae42c664ac4aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0udi-4900000000-5001b07cef2fed3caa2cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-004i-9100000000-048e2f1b42f7bd5104beView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0fb9-9000000000-fc1fbd4e7c49f44ba764View in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI M-80A) , Positivesplash10-0006-9000000000-bc0fa2967da6872f3a47View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00di-0900000000-8c96fee71b311d751181View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fk9-2900000000-4b405668c302f69a4bc7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0ufr-9300000000-fe46a418a2f0124566c3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0900000000-4e064e0123dc18b6136aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-014i-1900000000-02fff0bd874e6e8616bbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004l-9200000000-340c7a60a7708fa801f1View in MoNA
MSMass Spectrum (Electron Ionization)splash10-0006-9100000000-e7ef9a5c5a6cc5674cd1View in MoNA
References
References:
  • Cho, I. H., Kim, S. Y., Choi, H. K., Kim, Y. S. (2006). "Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.)." J Agric Food Chem 54:6332-6335. Pubmed: 16910727
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Sumner SJ, Fennell TR: Review of the metabolic fate of styrene. Crit Rev Toxicol. 1994;24 Suppl:S11-33. Pubmed: 7818768
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Watson WP, Munter T, Golding BT: A new role for glutathione: protection of vitamin B12 from depletion by xenobiotics. Chem Res Toxicol. 2004 Dec;17(12):1562-7. Pubmed: 15606130
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference:Sun Zhirong; Hu Xiang; Zhou Ding Wastewater minimization in indirect electrochemical synthesis of phenylacetaldehyde. TheScientificWorldJournal (2002), 2 48-52.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID16424
HMDB IDHMDB06236
Pubchem Compound ID998
Kegg IDC00601
ChemSpider ID13876539
WikipediaPAA
BioCyc IDPHENYLACETALDEHYDE
EcoCyc IDPHENYLACETALDEHYDE
Ligand ExpoHY1

Enzymes

General function:
Involved in copper ion binding
Specific function:
The enzyme prefers aromatic over aliphatic amines
Gene Name:
tynA
Uniprot ID:
P46883
Molecular weight:
84378
Reactions
RCH(2)NH(2) + H(2)O + O(2) = RCHO + NH(3) + H(2)O(2).
2-phenylethylamine + H(2)O + O(2) = phenylacetaldehyde + NH(3) + H(2)O(2).
General function:
Involved in oxidoreductase activity
Specific function:
Acts almost equally well on phenylacetaldehyde, 4- hydroxyphenylacetaldehyde and 3,4-dihydroxyphenylacetaldehyde
Gene Name:
feaB
Uniprot ID:
P80668
Molecular weight:
53699
Reactions
Phenylacetaldehyde + NAD(+) + H(2)O = phenylacetate + NADH.

Transporters

General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368