Record Information
Version2.0
Creation Date2012-05-31 13:53:16 -0600
Update Date2015-09-17 15:41:12 -0600
Secondary Accession Numbers
  • ECMDB01484
Identification
Name:Acetoacetyl-CoA
Description:Acetoacetyl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Succinyl-CoA:3-ketoacid-coenzyme A transferase 1, Hydroxymethylglutaryl-CoA synthase , Short chain 3-hydroxyacyl-CoA dehydrogenase, Acetyl-CoA acetyltransferase, 3-hydroxyacyl-CoA dehydrogenase type , Succinyl-CoA:3-ketoacid-coenzyme A transferase 2, and 3-ketoacyl-CoA thiolase.
Structure
Thumb
Synonyms:
  • 3-Acetoacetyl-CoA
  • 3-Acetoacetyl-Coenzyme A
  • 3-Oxobutyryl-CoA
  • 3-Oxobutyryl-Coenzyme A
  • Acetoacetyl coa
  • Acetoacetyl coenzyme A
  • Acetoacetyl-S-CoA
  • Acetoacetyl-CoA
  • Acetoacetyl-Coenzyme A
  • Acetoacetyl-S-CoA
  • S-Acetoacetylcoenzyme A
Chemical Formula:C25H40N7O18P3S
Weight:Average: 851.607
Monoisotopic: 851.136337737
InChI Key:OJFDKHTZOUZBOS-XBTRWLRFSA-N
InChI:InChI=1S/C25H40N7O18P3S/c1-13(33)8-16(35)54-7-6-27-15(34)4-5-28-23(38)20(37)25(2,3)10-47-53(44,45)50-52(42,43)46-9-14-19(49-51(39,40)41)18(36)24(48-14)32-12-31-17-21(26)29-11-30-22(17)32/h11-12,14,18-20,24,36-37H,4-10H2,1-3H3,(H,27,34)(H,28,38)(H,42,43)(H,44,45)(H2,26,29,30)(H2,39,40,41)/t14-,18-,19-,20?,24-/m1/s1
CAS number:1420-36-6
IUPAC Name:{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxobutanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional IUPAC Name:acetoacetyl-coa
SMILES:CC(=O)CC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as 3-oxo-acyl coas. These are organic compounds containing a 3-oxo acylated coenzyme A derivative.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct Parent3-oxo-acyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside 3',5'-bisphosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • 1,3-dicarbonyl compound
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • Monosaccharide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Thiocarboxylic acid ester
  • Secondary alcohol
  • Ketone
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Sulfenyl compound
  • Thioether
  • Thiocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Carboximidic acid derivative
  • Carboximidic acid
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-4
Melting point:Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility3.83 g/LALOGPS
logP-0.37ALOGPS
logP-6.8ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count18ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area380.7 ŲChemAxon
Rotatable Bond Count22ChemAxon
Refractivity182.1 m³·mol⁻¹ChemAxon
Polarizability75.74 ųChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
Acetate metabolismPW002090 ThumbThumb?image type=greyscaleThumb?image type=simple
Fatty acid metabolismPW000796 ThumbThumb?image type=greyscaleThumb?image type=simple
Phenylalanine metabolismPW000921 ThumbThumb?image type=greyscaleThumb?image type=simple
Propanoate metabolismPW000940 ThumbThumb?image type=greyscaleThumb?image type=simple
Tryptophan metabolismPW000815 ThumbThumb?image type=greyscaleThumb?image type=simple
fatty acid oxidation (Butanoate)PW001017 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
22± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-1912000130-163ca7231778bddd9739View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0913000000-4f4f26abcf9b0d9f285eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-2911000000-cc9acdeb298fa6ebbdb7View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-9730140350-cefdc8a0886f8e9e2b86View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-5910110010-51e3282fd98f872b9ff5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-6900100000-4a6e405bfbd488ea01d4View in MoNA
References
References:
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference:Not Available
Material Safety Data Sheet (MSDS)Not Available
External Links:
ResourceLink
CHEBI ID15345
HMDB IDHMDB01484
Pubchem Compound ID439214
Kegg IDC00332
ChemSpider ID388353
WikipediaAcetoacetyl-CoA
BioCyc IDACETOACETYL-COA
EcoCyc IDACETOACETYL-COA
Ligand ExpoCAA

Enzymes

General function:
Involved in acetyl-CoA C-acyltransferase activity
Specific function:
Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids
Gene Name:
fadA
Uniprot ID:
P21151
Molecular weight:
40876
Reactions
Acyl-CoA + acetyl-CoA = CoA + 3-oxoacyl-CoA.
General function:
Involved in 3-hydroxyacyl-CoA dehydrogenase activity
Specific function:
Catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities. Involved in the aerobic and anaerobic degradation of long-chain fatty acids
Gene Name:
fadB
Uniprot ID:
P21177
Molecular weight:
79593
Reactions
(S)-3-hydroxyacyl-CoA + NAD(+) = 3-oxoacyl-CoA + NADH.
(3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H(2)O.
(S)-3-hydroxybutanoyl-CoA = (R)-3-hydroxybutanoyl-CoA.
(3Z)-dodec-3-enoyl-CoA = (2E)-dodec-2-enoyl-CoA.
General function:
Involved in catalytic activity
Specific function:
Could possibly oxidize fatty acids using specific components
Gene Name:
paaF
Uniprot ID:
P76082
Molecular weight:
27237
Reactions
(3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H(2)O.
General function:
Involved in 3-hydroxyacyl-CoA dehydrogenase activity
Specific function:
(S)-3-hydroxybutanoyl-CoA + NADP(+) = 3- acetoacetyl-CoA + NADPH
Gene Name:
paaH
Uniprot ID:
P76083
Molecular weight:
51732
Reactions
(S)-3-hydroxybutanoyl-CoA + NADP(+) = 3-acetoacetyl-CoA + NADPH.
General function:
Involved in CoA-transferase activity
Specific function:
Acyl-CoA + acetate = a fatty acid anion + acetyl-CoA
Gene Name:
atoD
Uniprot ID:
P76458
Molecular weight:
23526
Reactions
Acyl-CoA + acetate = a fatty acid anion + acetyl-CoA.
General function:
Involved in CoA-transferase activity
Specific function:
Acyl-CoA + acetate = a fatty acid anion + acetyl-CoA
Gene Name:
atoA
Uniprot ID:
P76459
Molecular weight:
22960
Reactions
Acyl-CoA + acetate = a fatty acid anion + acetyl-CoA.
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
2 acetyl-CoA = CoA + acetoacetyl-CoA
Gene Name:
atoB
Uniprot ID:
P76461
Molecular weight:
40352
Reactions
2 acetyl-CoA = CoA + acetoacetyl-CoA.
General function:
Involved in transferase activity
Specific function:
Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Strongly involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate and weakly involved in the aerobic degradation of long- chain fatty acids
Gene Name:
fadI
Uniprot ID:
P76503
Molecular weight:
46530
Reactions
Acyl-CoA + acetyl-CoA = CoA + 3-oxoacyl-CoA.
General function:
Involved in 3-hydroxyacyl-CoA dehydrogenase activity
Specific function:
Catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities. Strongly involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate and weakly involved in the aerobic degradation of long-chain fatty acids
Gene Name:
fadJ
Uniprot ID:
P77399
Molecular weight:
77072
Reactions
(3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H(2)O.
(S)-3-hydroxyacyl-CoA + NAD(+) = 3-oxoacyl-CoA + NADH.
(S)-3-hydroxybutanoyl-CoA = (R)-3-hydroxybutanoyl-CoA.
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
2 acetyl-CoA = CoA + acetoacetyl-CoA
Gene Name:
yqeF
Uniprot ID:
Q46939
Molecular weight:
41018
Reactions
2 acetyl-CoA = CoA + acetoacetyl-CoA.

Transporters

General function:
Involved in 3-hydroxyacyl-CoA dehydrogenase activity
Specific function:
Catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities. Involved in the aerobic and anaerobic degradation of long-chain fatty acids
Gene Name:
fadB
Uniprot ID:
P21177
Molecular weight:
79593
Reactions
(S)-3-hydroxyacyl-CoA + NAD(+) = 3-oxoacyl-CoA + NADH.
(3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H(2)O.
(S)-3-hydroxybutanoyl-CoA = (R)-3-hydroxybutanoyl-CoA.
(3Z)-dodec-3-enoyl-CoA = (2E)-dodec-2-enoyl-CoA.