Record Information
Version2.0
Creation Date2012-05-31 10:25:12 -0600
Update Date2015-09-13 12:56:07 -0600
Secondary Accession Numbers
  • ECMDB00263
Identification
Name:Phosphoenolpyruvic acid
DescriptionPhosphoenolpyruvate (PEP) plays a key role in many metabolic reactions. It has a high energy phosphate bond, and is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells. In gluconeogenesis, PEP is formed from the decarboxylation of oxaloacetate and hydrolysis of 1 guanosine triphosphate molecule. This reaction is catalyzed by the enzyme phosphoenolpyruvate carboxykinase (PEPCK). This reaction is a rate-limiting step in gluconeogenesis. (wikipedia)
Structure
Thumb
Synonyms:
  • 2-Hydroxy-Acrylate dihydrogen phosphate
  • 2-Hydroxy-Acrylic acid dihydrogen phosphate
  • 2-Hydroxy-acrylic acid dihydrogen phosphoric acid
  • 2-Phosphonooxyprop-2-enoate
  • 2-Phosphonooxyprop-2-enoic acid
  • P-enol-pyr
  • P-enol-pyruvate
  • P-Enol-pyr
  • P-Enol-pyruvate
  • P-Enol-pyruvic acid
  • PEP
  • Phosphoenolpyruvate
Chemical Formula:C3H5O6P
Weight:Average: 168.042
Monoisotopic: 167.982374404
InChI Key:DTBNBXWJWCWCIK-UHFFFAOYSA-N
InChI:InChI=1S/C3H5O6P/c1-2(3(4)5)9-10(6,7)8/h1H2,(H,4,5)(H2,6,7,8)
CAS number:138-08-9
IUPAC Name:2-(phosphonooxy)prop-2-enoic acid
Traditional IUPAC Name:phosphoenolpyruvic acid
SMILES:OC(=O)C(=C)OP(O)(O)=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as phosphate esters. These are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassOrganic phosphoric acids and derivatives
Sub ClassPhosphate esters
Direct ParentPhosphate esters
Alternative Parents
Substituents
  • Phosphoric acid ester
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-3
Melting point:Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility13.2 g/LALOGPS
logP-1.2ALOGPS
logP-0.64ChemAxon
logS-1.1ALOGPS
pKa (Strongest Acidic)0.76ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area104.06 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity30.13 m³·mol⁻¹ChemAxon
Polarizability11.57 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
Phosphoenolpyruvic acid + N-Acetyl-D-glucosamine > N-Acetyl-D-Glucosamine 6-Phosphate + Pyruvic acid
Phosphoenolpyruvic acid + D-Glucose > Glucose 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Arbutin > Arbutin 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + 2(alpha-D-Mannosyl)-D-glycerate > 2(alpha-D-Mannosyl-6-phosphate)-D-glycerate + Pyruvic acid
Dihydroxyacetone + Phosphoenolpyruvic acid > Dihydroxyacetone phosphate + Pyruvic acid
Phosphoenolpyruvic acid + D-Mannose > Mannose 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + D-Fructose > Fructose 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + N-Acetylmannosamine > N-Acetyl-D-mannosamine 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Glucosamine > Glucosamine 6-phosphate + Pyruvic acid
ADP + Hydrogen ion + Phosphoenolpyruvic acid <> Adenosine triphosphate + Pyruvic acid
Phosphoenolpyruvic acid + Galactitol > Galactitol 1-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + D-Fructose > Fructose 1-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Sorbitol > Pyruvic acid + Sorbitol-6-phosphate
Phosphoenolpyruvic acid + Ascorbic acid > L-Ascorbate 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + D-Maltose > Maltose 6'-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Trehalose > Pyruvic acid + Trehalose 6-phosphate
Phosphoenolpyruvic acid + Sucrose > Pyruvic acid + Sucrose-6-phosphate
Phosphoenolpyruvic acid + N-Acetyl-D-muramoate > N-Acetylmuramic acid 6-phosphate + Pyruvic acid
D-Erythrose 4-phosphate + Water + Phosphoenolpyruvic acid <> 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate + Phosphate
Phosphoenolpyruvic acid + Mannitol > Sorbitol-6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Shikimate 3-phosphate <> 5-O-(1-Carboxyvinyl)-3-phosphoshikimate + Phosphate
D-Arabinose 5-phosphate + Water + Phosphoenolpyruvic acid <> 3-Deoxy-D-manno-octulosonate 8-phosphate + Phosphate
Adenosine triphosphate + Water + Pyruvic acid <> Adenosine monophosphate +2 Hydrogen ion + Phosphoenolpyruvic acid + Phosphate
Phosphoenolpyruvic acid + Chitobiose > Diacetylchitobiose-6-phosphate + Pyruvic acid
2-Phospho-D-glyceric acid <> Water + Phosphoenolpyruvic acid
Phosphoenolpyruvic acid + Uridine diphosphate-N-acetylglucosamine <> Phosphate + UDP-N-Acetyl-3-(1-carboxyvinyl)-D-glucosamine
Adenosine triphosphate + Oxalacetic acid <> ADP + Carbon dioxide + Phosphoenolpyruvic acid
Carbon dioxide + Water + Phosphoenolpyruvic acid <> Hydrogen ion + Oxalacetic acid + Phosphate + Hydrogen carbonate
Adenosine triphosphate + Pyruvic acid + Water <> Adenosine monophosphate + Phosphoenolpyruvic acid + Phosphate
Adenosine triphosphate + Pyruvic acid <> ADP + Phosphoenolpyruvic acid
Phosphate + Oxalacetic acid <> Water + Phosphoenolpyruvic acid + Carbon dioxide
Guanosine triphosphate + Pyruvic acid <> Guanosine diphosphate + Phosphoenolpyruvic acid
dATP + Pyruvic acid <> dADP + Phosphoenolpyruvic acid
dGTP + Pyruvic acid <> dGDP + Phosphoenolpyruvic acid
Nucleoside triphosphate + Pyruvic acid <> NDP + Phosphoenolpyruvic acid
3-Deoxy-D-manno-octulosonate 8-phosphate + Phosphate <> Phosphoenolpyruvic acid + D-Arabinose 5-phosphate + Water
Phosphoenolpyruvic acid + Ascorbic acid > L-Ascorbate 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + 2(alpha-D-Mannosyl)-D-glycerate > 2(alpha-D-Mannosyl-6-phosphate)-D-glycerate + Pyruvic acid
Arbutin + Phosphoenolpyruvic acid > Arbutin 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + b-D-Glucose > Glucose 6-phosphate + Pyruvic acid
N-Acetylmannosamine + Phosphoenolpyruvic acid > N-Acetyl-D-mannosamine 6-phosphate + Pyruvic acid
Dihydroxyacetone + Phosphoenolpyruvic acid > Dihydroxyacetone phosphate + Pyruvic acid
D-Arabinose 5-phosphate + Water + Phosphoenolpyruvic acid > 3-Deoxy-D-manno-octulosonate 8-phosphate + Phosphate
Phosphate + Oxalacetic acid <> Phosphoenolpyruvic acid + Hydrogen carbonate
Oxalacetic acid + Adenosine triphosphate > Carbon dioxide + Phosphoenolpyruvic acid + ADP
Pyruvic acid + Adenosine triphosphate <> Hydrogen ion + ADP + Phosphoenolpyruvic acid
Water + Pyruvic acid + Adenosine triphosphate > Hydrogen ion + Phosphate + Phosphoenolpyruvic acid + Adenosine monophosphate
Phosphoenolpyruvic acid + <i>N</i>-acetylmuramate > N-Acetylmuramic acid 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Salicin > Salicin 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Cellobiose > Cellobiose-6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Chitobiose > Pyruvic acid + Diacetylchitobiose-6-phosphate
Phosphoenolpyruvic acid + Mannitol > Sorbitol-6-phosphate + Pyruvic acid
D-fructose + Phosphoenolpyruvic acid > Fructose 1-phosphate + Pyruvic acid
D-fructose + Phosphoenolpyruvic acid > Fructose 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Galactitol > Galactitol 1-phosphate + Pyruvic acid
D-Mannose + Phosphoenolpyruvic acid > Mannose 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + N-Acetyl-D-glucosamine > N-Acetyl-D-Glucosamine 6-Phosphate + Pyruvic acid
Glucosamine + Phosphoenolpyruvic acid > Glucosamine 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Trehalose > Trehalose 6-phosphate + Pyruvic acid
Phosphoenolpyruvic acid + Sorbitol > Sorbitol-6-phosphate + Pyruvic acid
Uridine diphosphate-N-acetylglucosamine + Phosphoenolpyruvic acid > UDP-N-Acetyl-3-(1-carboxyvinyl)-D-glucosamine + Phosphate
Phosphoenolpyruvic acid + Shikimate 3-phosphate > Inorganic phosphate + 5-O-(1-Carboxyvinyl)-3-phosphoshikimate
Phosphoenolpyruvic acid + D-Erythrose 4-phosphate + Water > 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate + Inorganic phosphate
Inorganic phosphate + Oxalacetic acid > Water + Phosphoenolpyruvic acid + Carbonic acid
Phosphoenolpyruvic acid + protein L-histidine > Pyruvic acid + protein N(pi)-phospho-L-histidine
2-Phospho-D-glyceric acid > Phosphoenolpyruvic acid + Water
Phosphoenolpyruvic acid + D-Arabinose 5-phosphate + Water > 3-Deoxy-D-manno-octulosonate 8-phosphate + Inorganic phosphate
Adenosine triphosphate + Pyruvic acid > ADP + Phosphoenolpyruvic acid
Phosphoenolpyruvic acid + Uridine diphosphate-N-acetylglucosamine > Inorganic phosphate + UDP-N-Acetyl-3-(1-carboxyvinyl)-D-glucosamine
Adenosine triphosphate + Pyruvic acid + Water > Adenosine monophosphate + Phosphoenolpyruvic acid + Inorganic phosphate
Phosphoenolpyruvic acid + Protein histidine <> Pyruvic acid + Protein N(pi)-phospho-L-histidine
Phosphoenolpyruvic acid > Water + 2-Phosphoglyceric acid + 2-Phosphoglyceric acid
2-Phosphoglyceric acid + 2-Phosphoglyceric acid <> Water + Phosphoenolpyruvic acid
Phosphoenolpyruvic acid + Adenosine monophosphate + Phosphate + 2 Hydrogen ion > Adenosine triphosphate + Water + Pyruvic acid
Water + Adenosine triphosphate + Pyruvic acid > Adenosine monophosphate + Phosphate +2 Hydrogen ion + Phosphoenolpyruvic acid
Phosphoenolpyruvic acid + Adenosine diphosphate + Hydrogen ion + ADP > Adenosine triphosphate + Pyruvic acid
D-Erythrose 4-phosphate + Water + Phosphoenolpyruvic acid > Phosphate + 3-deoxy-D-arabino-heptulosonate-7-phosphate
shikimate 3-phosphate + Phosphoenolpyruvic acid + Shikimate 3-phosphate > Phosphate + 5-enolpyruvyl-shikimate 3-phosphate
Oxalacetic acid + Adenosine triphosphate > Adenosine diphosphate + Carbon dioxide + Phosphoenolpyruvic acid + ADP
D-Arabinose 5-phosphate + Phosphoenolpyruvic acid + Water > Phosphate + 3-deoxy-D-manno-octulosonate 8-phosphate + 3-Deoxy-D-manno-octulosonate 8-phosphate
Uridine diphosphate-N-acetylglucosamine + Phosphoenolpyruvic acid > Phosphate + UDP-N-acetyl-α-D-glucosamine-enolpyruvate
Phosphoenolpyruvic acid + Protein histidine <> Pyruvic acid + Protein N(pi)-phospho-L-histidine
ADP + Hydrogen ion + Phosphoenolpyruvic acid <> Adenosine triphosphate + Pyruvic acid
D-Erythrose 4-phosphate + Water + Phosphoenolpyruvic acid <>2 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate + Phosphate
Adenosine triphosphate + Water + Pyruvic acid <> Adenosine monophosphate +2 Hydrogen ion + Phosphoenolpyruvic acid + Phosphate
2 2-Phospho-D-glyceric acid <> Water + Phosphoenolpyruvic acid
D-Arabinose 5-phosphate + Water + Phosphoenolpyruvic acid <>3 3-Deoxy-D-manno-octulosonate 8-phosphate + Phosphate
Carbon dioxide + Water + Phosphoenolpyruvic acid <> Hydrogen ion + Oxalacetic acid + Phosphate + Hydrogen carbonate
Phosphoenolpyruvic acid + Uridine diphosphate-N-acetylglucosamine <> Phosphate + UDP-N-Acetyl-3-(1-carboxyvinyl)-D-glucosamine
Adenosine triphosphate + Oxalacetic acid <> ADP + Carbon dioxide + Phosphoenolpyruvic acid
ADP + Hydrogen ion + Phosphoenolpyruvic acid <> Adenosine triphosphate + Pyruvic acid
D-Erythrose 4-phosphate + Water + Phosphoenolpyruvic acid <>2 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate + Phosphate
D-Arabinose 5-phosphate + Water + Phosphoenolpyruvic acid <>3 3-Deoxy-D-manno-octulosonate 8-phosphate + Phosphate
More...

SMPDB Pathways:
Amino sugar and nucleotide sugar metabolism IPW000886 ThumbThumb?image type=greyscaleThumb?image type=simple
Chorismate biosynthesisPW000816 ThumbThumb?image type=greyscaleThumb?image type=simple
Gluconeogenesis from L-malic acidPW000819 ThumbThumb?image type=greyscaleThumb?image type=simple
Lipopolysaccharide biosynthesisPW000831 ThumbThumb?image type=greyscaleThumb?image type=simple
Secondary Metabolites: Shikimate PathwayPW000985 ThumbThumb?image type=greyscaleThumb?image type=simple
fructose metabolismPW000913 ThumbThumb?image type=greyscaleThumb?image type=simple
glycerol metabolismPW000914 ThumbThumb?image type=greyscaleThumb?image type=simple
glycerol metabolism IIPW000915 ThumbThumb?image type=greyscaleThumb?image type=simple
glycerol metabolism III (sn-glycero-3-phosphoethanolamine)PW000916 ThumbThumb?image type=greyscaleThumb?image type=simple
glycerol metabolism IV (glycerophosphoglycerol)PW000917 ThumbThumb?image type=greyscaleThumb?image type=simple
glycerol metabolism V (glycerophosphoserine)PW000918 ThumbThumb?image type=greyscaleThumb?image type=simple
glycolysis and pyruvate dehydrogenasePW000785 ThumbThumb?image type=greyscaleThumb?image type=simple
lipopolysaccharide biosynthesis IIPW001905 ThumbThumb?image type=greyscaleThumb?image type=simple
lipopolysaccharide biosynthesis IIIPW002059 ThumbThumb?image type=greyscaleThumb?image type=simple
peptidoglycan biosynthesis IPW000906 ThumbThumb?image type=greyscaleThumb?image type=simple
peptidoglycan biosynthesis I 2PW002062 ThumbThumb?image type=greyscaleThumb?image type=simple
superpathway of D-glucarate and D-galactarate degradationPW000795 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
  • Amino sugar and nucleotide sugar metabolism ec00520
  • Carbon fixation in photosynthetic organisms ec00710
  • Citrate cycle (TCA cycle) ec00020
  • Glycolysis / Gluconeogenesis ec00010
  • Lipopolysaccharide biosynthesis ec00540
  • Metabolic pathways eco01100
  • Methane metabolism ec00680
  • Microbial metabolism in diverse environments ec01120
  • Peptidoglycan biosynthesis ec00550
  • Phenylalanine, tyrosine and tryptophan biosynthesis ec00400
  • Phosphonate and phosphinate metabolism ec00440
  • Phosphotransferase system (PTS) ec02060
  • Purine metabolism ec00230
  • Pyruvate metabolism ec00620
  • Reductive carboxylate cycle (CO2 fixation) ec00720
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
11± 0 uMW31104.0 g/L Na2SO4; 5.36 g/L (NH4)2SO4; 1.0 g/L NH4Cl; 7.3 g/L K2HPO4; 1.8 g/L NaH2PO4 H2O; 12.0 g/L (NH4)2-H-citrate; 4.0 mL/L MgSO4 (1 M); 6.0 mL/L trace element solution; 0.02 g/L thiamine, 20 g/L glucoseStationary PhaseBioreactor, pH controlled, aerated37 oCPark, C., Park, C., Lee, Y., Lee, S.Y., Oh, H.B., Lee, J. (2011) Determination of the Intracellular Concentration of Metabolites in Escherichia coli Collected during the Exponential and Stationary Growth Phases using Liquid Chromatography-Mass Spectrometry. Bull Korean Chem. Soc. 32: 524-530.
70± 6 uMBW25113M9 Minimal Media, 4 g/L GlucoseMid-Log PhaseBioreactor, pH controlled, O2 controlled, dilution rate: 0.2/h37 oCPMID: 15158257
184± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
1340± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glycerolMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
909± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L acetateMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0292-0962000000-44d3914b4e07e5c50e3fView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0292-0962000000-44d3914b4e07e5c50e3fView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0002-9200000000-ae9d81fc88a98f678268View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-00di-9410000000-072478606f0ab6809902View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0udr-1900000000-9a4f5554af9a717d99c7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000x-9200000000-6cdc15f3daa25fc41655View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-001i-9100000000-39e22409d6d924a774f1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00xu-0912000000-ad1823470675975d5ff0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-1f5b761ce5fa374b0f8eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-d279f0ca2accb130181fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0920000000-f084dccf78e11c8760d7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-00lr-0911000000-7fa833698210746c838fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-62e28301f20b08971b78View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0udi-0900000000-25f970898112f7b89898View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-0002-0930000000-58691b23d317c2418c33View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-00p0-0493110000-9d61bb13ab5261fdf9fdView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-004i-9100000000-db409b3cfa9ebabbcb58View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4j-5090000000-1ee56bc4866301d4bf2eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0a4i-0090000000-bce08b01d44391bfecadView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-016r-7900000000-ffd3b8dcd65aaea26ac3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-004i-9000000000-ceae3587b1e7d8b3da27View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-004i-9000000000-701a17330cd18255d625View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-004i-9000000000-a4178ce4951e2c3dba7bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-004i-9000000000-9d0421620a7aaa9ef33fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-0k9i-1900000000-fb12ade375a7ac97f150View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positivesplash10-0f76-8900000000-7f57e6a8e72e5992cd88View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positivesplash10-000j-9300000000-c02bca019150d572b3bcView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positivesplash10-05bf-9200000000-73fa5ca52ecc17bac380View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positivesplash10-0079-9300000000-231346190165f44f28dcView in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Atkin BM, Buist NR, Utter MF, Leiter AB, Banker BQ: Pyruvate carboxylase deficiency and lactic acidosis in a retarded child without Leigh's disease. Pediatr Res. 1979 Feb;13(2):109-16. Pubmed: 219411
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Beyer C: Creatine measurement in serum and urine with an automated enzymatic method. Clin Chem. 1993 Aug;39(8):1613-9. Pubmed: 8353946
  • Bojarska-Dahlig H, Gloabski T, Dzioegielewska I: [Salts of cyclic erythromycin A carbonate with cinnamic acid derivatives] Acta Pol Pharm. 1975;32(3):311-7. Pubmed: 1155186
  • Cahill GF Jr, Aoki TT: Renal gluconeogenesis and amino-acid metabolism in man. Med Clin North Am. 1975 May;59(3):751-61. Pubmed: 1092934
  • Germaine GR, Tellefson LM: Promotion of Streptococcus mutans glucose transport by human whole saliva and parotid fluid. Infect Immun. 1985 Apr;48(1):7-13. Pubmed: 3980096
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Krogh P: Role of ochratoxin in disease causation. Food Chem Toxicol. 1992 Mar;30(3):213-24. Pubmed: 1618445
  • Landau BR, Chandramouli V, Schumann WC, Ekberg K, Kumaran K, Kalhan SC, Wahren J: Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients. Diabetologia. 1995 Jul;38(7):831-8. Pubmed: 7556986
  • Matsumoto T, van der Auwera P, Watanabe Y, Tanaka M, Ogata N, Naito S, Kumazawa J: Neutrophil function in hyperosmotic NaCl is preserved by phosphoenol pyruvate. Urol Res. 1991;19(4):223-7. Pubmed: 1656579
  • Momeni N, Yoshimoto T, Ryberg B, Sandberg-Wollheim M, Grubb A: Factors influencing analysis of prolyl endopeptidase in human blood and cerebrospinal fluid: increase in assay sensitivity. Scand J Clin Lab Invest. 2003;63(6):387-95. Pubmed: 14594319
  • Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2(1):18. Pubmed: 15882454
  • Orye E, Verhaaren H, Samuel K, van Mele B: A 46,XX,10Q+ chromosome constitution in a girl. Partial long arm duplication or insertional translocation? Humangenetik. 1975 May 26;28(1):1-8. Pubmed: 1150258
  • Park, C., Park, C., Lee, Y., Lee, S.Y., Oh, H.B., Lee, J. (2011) Determination of the Intracellular Concentration of Metabolites in Escherichia coli Collected during the Exponential and Stationary Growth Phases using Liquid Chromatography-Mass Spectrometry. Bull Korean Chem. Soc. 32: 524-530.
  • Peng, L., Arauzo-Bravo, M. J., Shimizu, K. (2004). "Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements." FEMS Microbiol Lett 235:17-23. Pubmed: 15158257
  • Schatzberger P: Maternity services. BMJ. 1992 May 23;304(6838):1382-3. Pubmed: 1611358
  • Shirokane Y, Nakajima M, Mizusawa K: A new enzymatic assay of urinary guanidinoacetic acid. Clin Chim Acta. 1991 Oct 31;202(3):227-36. Pubmed: 1667626
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Tannen RL: Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265-77. Pubmed: 29492
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference:Simon, Ethan S.; Grabowski, Sven; Whitesides, George M. Preparation of phosphoenolpyruvate from D-(-)-3-phosphoglyceric acid for use in regeneration of ATP. Journal of the American Chemical Society (1989), 111(24), 8920-1.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID26055
HMDB IDHMDB00263
Pubchem Compound ID1005
Kegg IDC00074
ChemSpider ID980
WikipediaPEP
BioCyc IDPHOSPHO-ENOL-PYRUVATE
EcoCyc IDPHOSPHO-ENOL-PYRUVATE
Ligand ExpoPEP

Enzymes

General function:
Involved in transporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannitol transport
Gene Name:
mtlA
Uniprot ID:
P00550
Molecular weight:
67972
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in phosphoenolpyruvate carboxylase activity
Specific function:
Through the carboxylation of phosphoenolpyruvate (PEP) it forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle
Gene Name:
ppc
Uniprot ID:
P00864
Molecular weight:
99062
Reactions
Phosphate + oxaloacetate = H(2)O + phosphoenolpyruvate + HCO(3)(-).
General function:
Involved in catalytic activity
Specific function:
Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
Gene Name:
aroH
Uniprot ID:
P00887
Molecular weight:
38735
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate.
General function:
Involved in catalytic activity
Specific function:
Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
Gene Name:
aroF
Uniprot ID:
P00888
Molecular weight:
38804
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
Gene Name:
srlB
Uniprot ID:
P05706
Molecular weight:
13304
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
Acts as both a kinase and a phosphatase on BglG
Gene Name:
bglF
Uniprot ID:
P08722
Molecular weight:
66482
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr)
Gene Name:
ptsI
Uniprot ID:
P08839
Molecular weight:
63561
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylglucosamine transport
Gene Name:
nagE
Uniprot ID:
P09323
Molecular weight:
68346
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transferase activity, transferring alkyl or aryl (other than methyl) groups
Specific function:
Phosphoenolpyruvate + 3-phosphoshikimate = phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate
Gene Name:
aroA
Uniprot ID:
P0A6D3
Molecular weight:
46095
Reactions
Phosphoenolpyruvate + 3-phosphoshikimate = phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate.
General function:
Involved in magnesium ion binding
Specific function:
Catalyzes the reversible conversion of 2- phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. It is also a component of the RNA degradosome, a multi-enzyme complex involved in RNA processing and messenger RNA degradation. Its interaction with RNase E is important for the turnover of mRNA, in particular on transcripts encoding enzymes of energy-generating metabolic routes. Its presence in the degradosome is required for the response to excess phosphosugar. May play a regulatory role in the degradation of specific RNAs, such as ptsG mRNA, therefore linking cellular metabolic status with post-translational gene regulation
Gene Name:
eno
Uniprot ID:
P0A6P9
Molecular weight:
45655
Reactions
2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O.
General function:
Involved in catalytic activity
Specific function:
Synthesis of KDO 8-P which is required for lipid A maturation and cellular growth
Gene Name:
kdsA
Uniprot ID:
P0A715
Molecular weight:
30833
Reactions
Phosphoenolpyruvate + D-arabinose 5-phosphate + H(2)O = 2-dehydro-3-deoxy-D-octonate 8-phosphate + phosphate.
General function:
Involved in transferase activity, transferring alkyl or aryl (other than methyl) groups
Specific function:
Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine. Target for the antibiotic phosphomycin
Gene Name:
murA
Uniprot ID:
P0A749
Molecular weight:
44817
Reactions
Phosphoenolpyruvate + UDP-N-acetyl-D-glucosamine = phosphate + UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine.
General function:
Involved in catalytic activity
Specific function:
Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
Gene Name:
aroG
Uniprot ID:
P0AB91
Molecular weight:
38009
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate.
General function:
Involved in magnesium ion binding
Specific function:
ATP + pyruvate = ADP + phosphoenolpyruvate
Gene Name:
pykF
Uniprot ID:
P0AD61
Molecular weight:
50729
Reactions
ATP + pyruvate = ADP + phosphoenolpyruvate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
MalX encodes a phosphotransferase system enzyme II that can recognize glucose and maltose as substrates even though these sugars may not represent the natural substrates of the system
Gene Name:
malX
Uniprot ID:
P19642
Molecular weight:
56627
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in fructose transport
Gene Name:
fruA
Uniprot ID:
P20966
Molecular weight:
57519
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in magnesium ion binding
Specific function:
ATP + pyruvate = ADP + phosphoenolpyruvate
Gene Name:
pykA
Uniprot ID:
P21599
Molecular weight:
51357
Reactions
ATP + pyruvate = ADP + phosphoenolpyruvate.
General function:
Involved in phosphoenolpyruvate carboxykinase (ATP) activity
Specific function:
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2)
Gene Name:
pckA
Uniprot ID:
P22259
Molecular weight:
59643
Reactions
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2).
General function:
Involved in catalytic activity
Specific function:
Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate
Gene Name:
ppsA
Uniprot ID:
P23538
Molecular weight:
87434
Reactions
ATP + pyruvate + H(2)O = AMP + phosphoenolpyruvate + phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in arbutin, cellobiose, and salicin transport
Gene Name:
ascF
Uniprot ID:
P24241
Molecular weight:
51025
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane
Gene Name:
ptsA
Uniprot ID:
P32670
Molecular weight:
91773
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine.
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport
Gene Name:
treB
Uniprot ID:
P36672
Molecular weight:
51080
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein binding
Specific function:
Component of the phosphoenolpyruvate-dependent nitrogen- metabolic phosphotransferase system (nitrogen-metabolic PTS), that seems to be involved in regulating nitrogen metabolism. Enzyme I- Ntr transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (NPr). Could function in the transcriptional regulation of sigma-54 dependent operons in conjunction with the NPr (ptsO) and EIIA-Ntr (ptsN) proteins
Gene Name:
ptsP
Uniprot ID:
P37177
Molecular weight:
83715
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine.
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in galactitol transport
Gene Name:
gatB
Uniprot ID:
P37188
Molecular weight:
10222
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane
Gene Name:
hrsA
Uniprot ID:
P54745
Molecular weight:
69667
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
Gene Name:
srlE
Uniprot ID:
P56580
Molecular weight:
33332
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport
Gene Name:
crr
Uniprot ID:
P69783
Molecular weight:
18251
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport. This enzyme is also a chemoreceptor monitoring the environment for changes in sugar concentration
Gene Name:
ptsG
Uniprot ID:
P69786
Molecular weight:
50676
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manX
Uniprot ID:
P69797
Molecular weight:
35047
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in fructose transport
Gene Name:
fruB
Uniprot ID:
P69811
Molecular weight:
39647
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in transporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in ascorbate transport
Gene Name:
ulaC
Uniprot ID:
P69820
Molecular weight:
17237
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in ascorbate transport
Gene Name:
ulaB
Uniprot ID:
P69822
Molecular weight:
10896
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in galactitol transport
Gene Name:
gatA
Uniprot ID:
P69828
Molecular weight:
16907
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylmuramic acid (MurNAc) transport, yielding cytoplasmic MurNAc-6-P. Is responsible for growth on MurNAc as the sole source of carbon and energy. Is also able to take up anhydro-N-acetylmuramic acid (anhMurNAc), but cannot phosphorylate the carbon 6, probably because of the 1,6- anhydro ring
Gene Name:
murP
Uniprot ID:
P77272
Molecular weight:
49801
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Multifunctional protein that includes general (non sugar-specific) and sugar-specific components of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). HPr transfers the phosphoryl group to the phosphoryl carrier EIIA, which then transfers it to EIIB
Gene Name:
fryA
Uniprot ID:
P77439
Molecular weight:
92129
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine.
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active- transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in ascorbate transport
Gene Name:
ulaA
Uniprot ID:
P39301
Molecular weight:
50737
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
Gene Name:
srlA
Uniprot ID:
P56579
Molecular weight:
20580
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manY
Uniprot ID:
P69801
Molecular weight:
27636
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manZ
Uniprot ID:
P69805
Molecular weight:
31303
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in galactitol transport
Gene Name:
gatC
Uniprot ID:
P69831
Molecular weight:
48365
General function:
Involved in glycerone kinase activity
Specific function:
Dihydroxyacetone binding subunit of the dihydroxyacetone kinase, which is responsible for phosphorylating dihydroxyacetone. Binds covalently dihydroxyacetone in hemiaminal linkage. Acts also as a corepressor of dhaR by binding to its sensor domain, in the absence of dihydroxyacetone
Gene Name:
dhaK
Uniprot ID:
P76015
Molecular weight:
38215
General function:
Involved in glycerone kinase activity
Specific function:
ADP-binding subunit of the dihydroxyacetone kinase, which is responsible for phosphorylating dihydroxyacetone. DhaL- ADP receives a phosphoryl group from dhaM and transmits it to dihydroxyacetone. DhaL-ADP acts also as a coactivator by binding to the sensor domain of dhaR. DhaL-ATP is inactive
Gene Name:
dhaL
Uniprot ID:
P76014
Molecular weight:
22632
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Phosphotransferase subunit of the dihydroxyacetone kinase, which is responsible for phosphorylating dihydroxyacetone. DhaM serves as the phosphoryl donor. It is phosphorylated by HPr, then it donates its phosphoryl group to dhaL-ADP, which eventually transmits it to dihydroxyacetone
Gene Name:
dhaM
Uniprot ID:
P37349
Molecular weight:
51448
Reactions
Phosphoenolpyruvate + protein L-histidine = pyruvate + protein N(pi)-phospho-L-histidine.
Protein HPr N(pi)-phospho-L-histidine + protein EIIA = protein HPr + protein EIIA N(tau)-phospho-L-histidine.
Protein EIIA N(pi)-phospho-L-histidine + dhaL-ADP = protein EIIA + dhaL-ATP.
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III)
Gene Name:
ptsH
Uniprot ID:
P0AA04
Molecular weight:
9119
Reactions
Protein HPr N(pi)-phospho-L-histidine + protein EIIA = protein HPr + protein EIIA N(tau)-phospho-L-histidine.

Transporters

General function:
Involved in transporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannitol transport
Gene Name:
mtlA
Uniprot ID:
P00550
Molecular weight:
67972
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
Acts as both a kinase and a phosphatase on BglG
Gene Name:
bglF
Uniprot ID:
P08722
Molecular weight:
66482
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylglucosamine transport
Gene Name:
nagE
Uniprot ID:
P09323
Molecular weight:
68346
Reactions
Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine.
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
MalX encodes a phosphotransferase system enzyme II that can recognize glucose and maltose as substrates even though these sugars may not represent the natural substrates of the system
Gene Name:
malX
Uniprot ID:
P19642
Molecular weight:
56627
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in sugar:hydrogen symporter activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in fructose transport
Gene Name:
fruA
Uniprot ID:
P20966
Molecular weight:
57519
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in arbutin, cellobiose, and salicin transport
Gene Name:
ascF
Uniprot ID:
P24241
Molecular weight:
51025
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in trehalose transport
Gene Name:
treB
Uniprot ID:
P36672
Molecular weight:
51080
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in glucose transport. This enzyme is also a chemoreceptor monitoring the environment for changes in sugar concentration
Gene Name:
ptsG
Uniprot ID:
P69786
Molecular weight:
50676
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in protein-N(PI)-phosphohistidine-sugar phosphotransferase activity
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylmuramic acid (MurNAc) transport, yielding cytoplasmic MurNAc-6-P. Is responsible for growth on MurNAc as the sole source of carbon and energy. Is also able to take up anhydro-N-acetylmuramic acid (anhMurNAc), but cannot phosphorylate the carbon 6, probably because of the 1,6- anhydro ring
Gene Name:
murP
Uniprot ID:
P77272
Molecular weight:
49801
Reactions
Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate.
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active- transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in ascorbate transport
Gene Name:
ulaA
Uniprot ID:
P39301
Molecular weight:
50737
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in glucitol/sorbitol transport
Gene Name:
srlA
Uniprot ID:
P56579
Molecular weight:
20580
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manY
Uniprot ID:
P69801
Molecular weight:
27636
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in mannose transport
Gene Name:
manZ
Uniprot ID:
P69805
Molecular weight:
31303
General function:
Involved in phosphoenolpyruvate-dependent sugar phosphotransferase system
Specific function:
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. This system is involved in galactitol transport
Gene Name:
gatC
Uniprot ID:
P69831
Molecular weight:
48365