Record Information
Version2.0
Creation Date2012-05-31 10:22:45 -0600
Update Date2015-09-13 12:56:06 -0600
Secondary Accession Numbers
  • ECMDB00168
Identification
Name:L-Asparagine
DescriptionAsparagine (Asn) is one of the 20 most common natural amino acids on Earth. It has carboxamide as the side chain's functional group. It is considered a non-essential amino acid. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. The enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Glutamines have an extra methylene group, have more conformational entropy and thus are less useful in this regard. Asparagine also provides key sites for N-linked glycosylation, modification of the protein chain with the addition of carbohydrate chains. (http://en.wikipedia.org/wiki/Asparagine)
Structure
Thumb
Synonyms:
  • α-aminosuccinamate
  • α-aminosuccinamic acid
  • (-)-Asparagine
  • (S)-2,4-Diamino-4-oxobutanoate
  • (S)-2,4-Diamino-4-oxobutanoic acid
  • (S)-Asparagine
  • 2,4-Diamino-4-oxo-(S)-Butanoate
  • 2,4-Diamino-4-oxo-(S)-Butanoic acid
  • 2,4-diamino-4-Oxobutanoate, (S)-
  • 2,4-diamino-4-oxobutanoic acid, (S)-
  • 2-Aminosuccinamate
  • 2-Aminosuccinamate, L-
  • 2-Aminosuccinamic acid
  • 2-aminosuccinamic acid, L-
  • a Amminosuccinamate
  • a Amminosuccinamic acid
  • A-Aminosuccinamate
  • A-Aminosuccinamic acid
  • Agedoite
  • Alpha Amminosuccinamate
  • Alpha Amminosuccinamic acid
  • Alpha-Aminosuccinamate
  • Alpha-Aminosuccinamic acid
  • Altheine
  • Asn
  • Asparagine
  • Asparagine acid
  • Asparamide
  • Aspartamate
  • Aspartamic acid
  • Aspartate β-amide
  • Aspartate amide
  • Aspartate b amide
  • Aspartate b-amide
  • Aspartate beta amide
  • Aspartate beta-amide
  • Aspartate β amide
  • Aspartate β-amide
  • Aspartic acid β-amide
  • Aspartic acid amide
  • Aspartic acid b amide
  • Aspartic acid b-amide
  • Aspartic acid beta amide
  • Aspartic acid beta-amide
  • Aspartic acid β amide
  • Aspartic acid β-amide
  • B2,4-(S)-diamino-4-oxo-utanoate
  • B2,4-(S)-diamino-4-oxo-utanoic acid
  • Butanoate, 2,4-diamino-4-oxo-, (S)-
  • Butanoic acid, 2,4-diamino-4-oxo-, (S)-
  • Crystal VI
  • L-β-asparagine
  • L-2,4-Diamino-4-oxobutanoate
  • L-2,4-Diamino-4-oxobutanoic acid
  • L-2-Aminosuccinamate
  • L-2-Aminosuccinamic acid
  • L-Asparagine
  • L-Asparatamine
  • L-Aspartamine
  • L-b-Asparagine
  • L-beta-Asparagine
  • L-β-Asparagine
  • N
  • α Amminosuccinamate
  • α Amminosuccinamic acid
  • α-Aminosuccinamate
  • α-Aminosuccinamic acid
Chemical Formula:C4H8N2O3
Weight:Average: 132.1179
Monoisotopic: 132.053492132
InChI Key:DCXYFEDJOCDNAF-REOHCLBHSA-N
InChI:InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9)/t2-/m0/s1
CAS number:70-47-3
IUPAC Name:(2S)-2-amino-3-carbamoylpropanoic acid
Traditional IUPAC Name:L-asparagine
SMILES:N[C@@H](CC(N)=O)C(O)=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as asparagine and derivatives. Asparagine and derivatives are compounds containing asparagine or a derivative thereof resulting from reaction of asparagine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentAsparagine and derivatives
Alternative ParentsNot Available
SubstituentsNot Available
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Physical Properties
State:Solid
Charge:0
Melting point:234-235 °C
Experimental Properties:
PropertyValueSource
Water Solubility:29.4 mg/mL [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP:-3.82 [CHMELIK,J ET AL. (1991)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility168 g/LALOGPS
logP-3.4ALOGPS
logP-4.3ChemAxon
logS0.1ALOGPS
pKa (Strongest Acidic)2ChemAxon
pKa (Strongest Basic)8.43ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area106.41 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity28.35 m³·mol⁻¹ChemAxon
Polarizability11.68 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
L-Asparagine + Water > L-Aspartic acid + Ammonium
L-Aspartic acid + Adenosine triphosphate + L-Glutamine + Water > Adenosine monophosphate + L-Asparagine + L-Glutamate + Hydrogen ion + Pyrophosphate
L-Asparagine + Adenosine triphosphate + tRNA(Asn) + tRNA(Asn) <> Adenosine monophosphate + L-Asparaginyl-tRNA(Asn) + Pyrophosphate + L-Asparaginyl-tRNA(Asn)
L-Aspartic acid + Adenosine triphosphate + Ammonium > Adenosine monophosphate + L-Asparagine + Hydrogen ion + Pyrophosphate
Adenosine triphosphate + L-Aspartic acid + Ammonia <> Adenosine monophosphate + Pyrophosphate + L-Asparagine
L-Asparagine + Water <> L-Aspartic acid + Ammonia
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water <> Adenosine monophosphate + Pyrophosphate + L-Asparagine + L-Glutamate
Adenosine triphosphate + L-Asparagine + tRNA(Asn) <> Adenosine monophosphate + Pyrophosphate + L-Asparaginyl-tRNA(Asn)
Ammonia + L-Aspartic acid + Adenosine triphosphate > L-Asparagine + Pyrophosphate + Adenosine monophosphate
L-Asparagine + Water > Hydrogen ion + L-Aspartic acid + Ammonia
gly-asn + Water > Glycine + L-Asparagine
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water > Adenosine monophosphate + Pyrophosphate + L-Asparagine + L-Glutamate
L-Asparagine + Water > L-Aspartic acid + Ammonia
Adenosine triphosphate + L-Asparagine + tRNA(Asn) > Adenosine monophosphate + Pyrophosphate + L-asparaginyl-tRNA(Asn)
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water + Ammonia <> Adenosine monophosphate + Pyrophosphate + L-Asparagine + L-Glutamate
Adenosine triphosphate + L-Aspartic acid + Ammonia + L-Aspartic acid > Adenosine monophosphate + L-Asparagine + Pyrophosphate + L-Asparagine
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water + L-Aspartic acid > Adenosine monophosphate + Pyrophosphate + L-Asparagine + L-Glutamic acid + L-Asparagine + L-Glutamate
L-Asparagine + Adenosine triphosphate + Hydrogen ion + tRNA(Asn) + L-Asparagine > Pyrophosphate + Adenosine monophosphate + L-asparaginyl-tRNA(Asn)
L-Aspartic acid + Water + Adenosine triphosphate + L-Glutamine + L-Aspartic acid > L-Asparagine + Hydrogen ion + Adenosine monophosphate + L-Glutamic acid + Pyrophosphate + L-Asparagine + L-Glutamate
L-Aspartic acid + Adenosine triphosphate + Ammonium + L-Aspartic acid > L-Asparagine + Adenosine monophosphate + Pyrophosphate + Hydrogen ion + L-Asparagine
L-Asparagine + Water + L-Asparagine > L-Aspartic acid + Ammonium + L-Aspartic acid
L-Asparagine + Water <> L-Aspartic acid + Ammonia
L-Asparagine + Water > Hydrogen ion + L-Aspartic acid + Ammonia
SMPDB Pathways:
Asparagine biosynthesisPW000813 ThumbThumb?image type=greyscaleThumb?image type=simple
Aspartate metabolismPW000787 ThumbThumb?image type=greyscaleThumb?image type=simple
Nitrogen metabolismPW000755 ThumbThumb?image type=greyscaleThumb?image type=simple
inner membrane transportPW000786 ThumbThumb?image type=greyscaleThumb?image type=simple
tRNA Charging 2PW000803 ThumbThumb?image type=greyscaleThumb?image type=simple
tRNA chargingPW000799 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
EcoCyc Pathways:
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
511± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glucoseMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
970± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L glycerolMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
540± 0 uMK12 NCM3722Gutnick minimal complete medium (4.7 g/L KH2PO4; 13.5 g/L K2HPO4; 1 g/L K2SO4; 0.1 g/L MgSO4-7H2O; 10 mM NH4Cl) with 4 g/L acetateMid-Log PhaseShake flask and filter culture37 oCPMID: 19561621
103± 0 uMBW2511348 mM Na2HPO4, 22 mM KH2PO4, 10 mM NaCl, 45 mM (NH4)2SO4, supplemented with 1 mM MgSO4, 1 mg/l thiamine·HCl, 5.6 mg/l CaCl2, 8 mg/l FeCl3, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·2H2O and 0.6 mg/l Na2MoO4·2H2O. 4 g/L GlucoStationary Phase, glucose limitedBioreactor, pH controlled, O2 and CO2 controlled, dilution rate: 0.2/h37 oCPMID: 17379776
0.73± 0.05 uMBL21 DE3Luria-Bertani (LB) mediaStationary phase cultures (overnight culture)Shake flask37 oCExperimentally Determined
Download Details
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-0159-0910000000-bedf57998656ab5ebc16View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-0159-0910000000-4979c4d028d2dc931263View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0159-0910000000-b7ea3fef61f3940cbddaView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-00di-9710000000-6d0afcbcc003347e598eView in MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-0uxr-0910000000-2be567239bd3229b1ca1View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-0790000000-b8141f48cbebb90f683eView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-1790000000-1d12ed9b4fb2799da766View in MoNA
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-014u-0961000000-65a5c0999f17110c9939View in MoNA
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-00kr-0940000000-0e0e5c7bdbac5ea0e49eView in MoNA
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-00lr-1920000000-7864dbb1f685e64dd1cfView in MoNA
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-000i-1940000000-964ea25da2789805985aView in MoNA
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-00lr-0930000000-79a089d9875e092dd7f2View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-bedf57998656ab5ebc16View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-4979c4d028d2dc931263View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-b7ea3fef61f3940cbddaView in MoNA
GC-MSGC-MS Spectrum - GC-EI-QQ (Non-derivatized)splash10-00di-4931100000-17f149310ce3a0f748d1View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9710000000-6d0afcbcc003347e598eView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0uxr-0910000000-2be567239bd3229b1ca1View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-0790000000-b8141f48cbebb90f683eView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-1790000000-1d12ed9b4fb2799da766View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-014u-0961000000-65a5c0999f17110c9939View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00kr-0940000000-0e0e5c7bdbac5ea0e49eView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00lr-1920000000-7864dbb1f685e64dd1cfView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-000i-1940000000-964ea25da2789805985aView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-000f-9100000000-5881591331bd059b7e7dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0080-9400000000-e5c7e19f427eea6d71b0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00di-9000000000-afc1214100db1168b095View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00dl-9000000000-57e977cd87e9a86d482bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-6fb96f5aa291359dba29View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-76f11e6fe5657c35d15fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-e944486273dbfde4cae4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-27ad91a86be0c4d86c3cView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-b8b7a3431b66246ad613View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-03fa294ec740e189dd99View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-cee2081406fc25ab6169View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-cd79afa0c27f65e54adcView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-01q9-0943200000-5a24322ba0ce2f410155View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03di-0900000000-fc3086cc1bb0c06a4c11View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03di-3900000000-2d74d8232e7523f3b1c9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0900000000-fa61c6fa9a87ce4905bbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-01q9-0942200000-757da8b3406485c997b0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-014i-9000000000-eac18512f2d22ab7a7efView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03di-0900000000-8df6d5b6cf94bf081c89View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0900000000-18079004a95c252da208View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-001i-0900000000-e6b1f9b4982e6cdc863dView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-03di-5900000000-7b9c09b3b6de28972f97View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-00dl-9100000000-2ea95ead344d62e230a4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-0006-9000000000-defacc365589bc4437d7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-0006-9000000000-fd60db4d5e35794c45aeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-001i-3900000000-fd0f1034b5c1e40435c0View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR13C NMR SpectrumNot AvailableView in JSpectraViewer
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Ahlman B, Andersson K, Leijonmarck CE, Ljungqvist O, Hedenborg L, Wernerman J: Short-term starvation alters the free amino acid content of the human intestinal mucosa. Clin Sci (Lond). 1994 Jun;86(6):653-62. Pubmed: 7914846
  • Avramis VI, Panosyan EH: Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005;44(4):367-93. Pubmed: 15828851
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Chiara F, Goumans MJ, Forsberg H, Ahgren A, Rasola A, Aspenstrom P, Wernstedt C, Hellberg C, Heldin CH, Heuchel R: A gain of function mutation in the activation loop of platelet-derived growth factor beta-receptor deregulates its kinase activity. J Biol Chem. 2004 Oct 8;279(41):42516-27. Epub 2004 Jul 28. Pubmed: 15284236
  • Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. Pubmed: 12297216
  • Filho JC, Bergstrom J, Stehle P, Furst P: Simultaneous measurements of free amino acid patternsof plasma, muscle and erythrocytes in healthy human subjects. Clin Nutr. 1997 Dec;16(6):299-305. Pubmed: 16844612
  • Fischer D, Schroers A, Blumcke I, Urbach H, Zerres K, Mortier W, Vorgerd M, Schroder R: Consequences of a novel caveolin-3 mutation in a large German family. Ann Neurol. 2003 Feb;53(2):233-41. Pubmed: 12557291
  • Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. Pubmed: 6198473
  • Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M. (2007). "Multiple high-throughput analyses monitor the response of E. coli to perturbations." Science 316:593-597. Pubmed: 17379776
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Mohrmann K, van Eijndhoven MA, Schinkel AH, Schellens JH: Absence of N-linked glycosylation does not affect plasma membrane localization of breast cancer resistance protein (BCRP/ABCG2). Cancer Chemother Pharmacol. 2005 Oct;56(4):344-50. Epub 2005 May 5. Pubmed: 15875186
  • Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. Pubmed: 15911239
  • Poon CJ, Plaas AH, Keene DR, McQuillan DJ, Last K, Fosang AJ: N-linked keratan sulfate in the aggrecan interglobular domain potentiates aggrecanase activity. J Biol Chem. 2005 Jun 24;280(25):23615-21. Epub 2005 Apr 22. Pubmed: 15849197
  • Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. Pubmed: 14992292
  • Rip JW, Coulter-Mackie MB, Rupar CA, Gordon BA: Purification and structure of human liver aspartylglucosaminidase. Biochem J. 1992 Dec 15;288 ( Pt 3):1005-10. Pubmed: 1281977
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Starczynowski DT, Reynolds JG, Gilmore TD: Mutations of tumor necrosis factor alpha-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene. 2005 Nov 10;24(49):7355-68. Pubmed: 16027730
  • Sun S, Han J, Ralph WM Jr, Chandrasekaran A, Liu K, Auborn KJ, Carter TH: Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones. 2004 Mar;9(1):76-87. Pubmed: 15270080
  • Takamatsu S, Inoue N, Katsumata T, Nakamura K, Fujibayashi Y, Takeuchi M: The relationship between the branch-forming glycosyltransferases and cell surface sugar chain structures. Biochemistry. 2005 Apr 26;44(16):6343-9. Pubmed: 15835923
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Xu L, Wang Y, Gillespie D, Meissner G: Two rings of negative charges in the cytosolic vestibule of type-1 ryanodine receptor modulate ion fluxes. Biophys J. 2006 Jan 15;90(2):443-53. Epub 2005 Oct 20. Pubmed: 16239337
Synthesis Reference:Wang, Fangda. Preparation of L-b-asparagine. Faming Zhuanli Shenqing Gongkai Shuomingshu (2005), 8 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID17196
HMDB IDHMDB00168
Pubchem Compound ID6267
Kegg IDC00152
ChemSpider ID6031
WikipediaAsn
BioCyc IDASN
EcoCyc IDASN
Ligand ExpoASN_LFZW

Enzymes

General function:
Involved in asparaginase activity
Specific function:
L-asparagine + H(2)O = L-aspartate + NH(3)
Gene Name:
ansB
Uniprot ID:
P00805
Molecular weight:
36851
Reactions
L-asparagine + H(2)O = L-aspartate + NH(3).
General function:
Involved in nucleotide binding
Specific function:
ATP + L-aspartate + NH(3) = AMP + diphosphate + L-asparagine
Gene Name:
asnA
Uniprot ID:
P00963
Molecular weight:
36650
Reactions
ATP + L-aspartate + NH(3) = AMP + diphosphate + L-asparagine.
General function:
Involved in nucleotide binding
Specific function:
ATP + L-asparagine + tRNA(Asn) = AMP + diphosphate + L-asparaginyl-tRNA(Asn)
Gene Name:
asnS
Uniprot ID:
P0A8M0
Molecular weight:
52570
Reactions
ATP + L-asparagine + tRNA(Asn) = AMP + diphosphate + L-asparaginyl-tRNA(Asn).
General function:
Involved in asparaginase activity
Specific function:
L-asparagine + H(2)O = L-aspartate + NH(3)
Gene Name:
ansA
Uniprot ID:
P0A962
Molecular weight:
37127
Reactions
L-asparagine + H(2)O = L-aspartate + NH(3).
General function:
Involved in asparagine synthase (glutamine-hydrolyzing) activity
Specific function:
ATP + L-aspartate + L-glutamine + H(2)O = AMP + diphosphate + L-asparagine + L-glutamate
Gene Name:
asnB
Uniprot ID:
P22106
Molecular weight:
62659
Reactions
ATP + L-aspartate + L-glutamine + H(2)O = AMP + diphosphate + L-asparagine + L-glutamate.
General function:
Involved in hydrolase activity
Specific function:
May be involved in glutathione, and possibly other peptide, transport, although these results could also be due to polar effects of disruption
Gene Name:
iaaA
Uniprot ID:
P37595
Molecular weight:
33394
Reactions
Cleavage of a beta-linked Asp residue from the N-terminus of a polypeptide.

Transporters

General function:
Involved in nucleotide binding
Specific function:
Probably part of a binding-protein-dependent transport system yecCS for an amino acid. Probably responsible for energy coupling to the transport system
Gene Name:
yecC
Uniprot ID:
P37774
Molecular weight:
27677
General function:
Involved in transporter activity
Specific function:
Probably part of the binding-protein-dependent transport system yecCS for an amino acid; probably responsible for the translocation of the substrate across the membrane
Gene Name:
yecS
Uniprot ID:
P0AFT2
Molecular weight:
24801
General function:
Involved in transport
Specific function:
Specific function unknown
Gene Name:
ansP
Uniprot ID:
P77610
Molecular weight:
54233
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368