Record Information
Version2.0
Creation Date2012-05-31 13:57:38 -0600
Update Date2015-09-13 12:56:12 -0600
Secondary Accession Numbers
  • ECMDB03035
Identification
Name:Glycolic acid
Description:Glycolic acid (or hydroxyacetic acid) is the smallest alpha-hydroxy acid (AHA). In its pure form, glycolic acid is a colorless crystalline solid. Due to its excellent capability to penetrate skin, glycolic acid finds applications in skin care products, most often as a chemical peel. Glycolic acid is also used for tattoo removal. In E coli it is involved in glyoxylate and dicarboxylate metabolism.
Structure
Thumb
Synonyms:
  • 2-Hydroxyacetate
  • 2-Hydroxyacetic acid
  • A-Hydroxyacetate
  • A-Hydroxyacetic acid
  • Alpha-Hydroxyacetate
  • Alpha-Hydroxyacetic acid
  • Glycocide
  • Glycolate
  • Glycolic acid
  • Glycollate
  • Glycollic acid
  • GlyPure
  • GlyPure 70
  • Hydroxyacetate
  • Hydroxyacetic acid
  • Hydroxyethanoate
  • Hydroxyethanoic acid
  • Sodium glycolate
  • Sodium glycolic acid
  • α-Hydroxyacetate
  • α-Hydroxyacetic acid
Chemical Formula:C2H4O3
Weight:Average: 76.0514
Monoisotopic: 76.016043994
InChI Key:AEMRFAOFKBGASW-UHFFFAOYSA-N
InChI:InChI=1S/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5)
CAS number:79-14-1
IUPAC Name:2-hydroxyacetic acid
Traditional IUPAC Name:glycolic acid
SMILES:OCC(O)=O
Chemical Taxonomy
DescriptionThis compound belongs to the class of chemical entities known as alpha hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon.
KingdomChemical entities
Super ClassOrganic compounds
ClassOrganic acids and derivatives
Sub ClassHydroxy acids and derivatives
Direct ParentAlpha hydroxy acids and derivatives
Alternative Parents
Substituents
  • Alpha-hydroxy acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-1
Melting point:75-80 °C
Experimental Properties:
PropertyValueSource
Water Solubility:SolublePhysProp
LogP:-1.11 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility608.0 mg/mLALOGPS
logP-1ALOGPS
logP-1ChemAxon
logS0.9ALOGPS
pKa (Strongest Acidic)3.53ChemAxon
pKa (Strongest Basic)-3.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 Å2ChemAxon
Rotatable Bond Count1ChemAxon
Refractivity14.35 m3·mol-1ChemAxon
Polarizability6.2 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
D-arabinose degradation IPW002038 Pw002038Pw002038 greyscalePw002038 simple
Ethylene Glycol DegradationPW002093 Pw002093Pw002093 greyscalePw002093 simple
glycolate and glyoxylate degradationPW000827 Pw000827Pw000827 greyscalePw000827 simple
inner membrane transportPW000786 Pw000786Pw000786 greyscalePw000786 simple
KEGG Pathways:
  • Chloroalkane and chloroalkene degradation ec00625
  • Glyoxylate and dicarboxylate metabolism ec00630
  • Microbial metabolism in diverse environments ec01120
  • gamma-Hexachlorocyclohexane degradation ec00361
EcoCyc Pathways:
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-0002-0900000000-ed8b8e4a9e2556ea02e2View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-00dj-9600000000-8bafc88c7bf4e90fb5e8View in MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-003r-2910000000-bd50bf5bab6f5327eaf4View in MoNA
GC-MSGC-MS Spectrum - GC-MSsplash10-0a7l-9000000000-1e9466549305eb20257bView in MoNA
GC-MSGC-MS Spectrum - EI-Bsplash10-001i-9000000000-cadf899be6b15d008330View in MoNA
GC-MSGC-MS Spectrum - EI-Bsplash10-001i-9000000000-e66ed28d8419895e0fb4View in MoNA
GC-MSGC-MS Spectrum - EI-Bsplash10-0002-0900000000-7f84fac3284d17fa3ba6View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOFsplash10-0002-0900000000-ed8b8e4a9e2556ea02e2View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOFsplash10-00dj-9600000000-8bafc88c7bf4e90fb5e8View in MoNA
GC-MSGC-MS Spectrum - GC-MSsplash10-003r-2910000000-bd50bf5bab6f5327eaf4View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOFsplash10-0002-0900000000-d724c85a3b30e3c2e4bcView in MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-05i9-9520000000-5f0019fe63eb6e692109View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-004i-9000000000-e942bdae1d60e5f5d649View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-00di-9000000000-f225de2de3540c3f50a4View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Negative (Annotated)splash10-00di-9000000000-7de217d97b44f53aad82View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-00di-9000000000-88af2b259f82cd1d8938View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-004i-9000000000-c968a24f0640b154325bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-0059-9000000000-1dfacf30bf94ce3bf8bbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-00di-9000000000-88af2b259f82cd1d8938View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-004i-9000000000-c968a24f0640b154325bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , negativesplash10-0059-9000000000-1dfacf30bf94ce3bf8bbView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-004i-9000000000-d961c3c14ec415e3141eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a6r-9000000000-67f73be970ba9f885c4aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4i-9000000000-f2ccf0b88e0ad65ed4c6View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-9000000000-7445713a5fe347bbc8b8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-004i-9000000000-26e13242443efc1aa846View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-9000000000-6ba976b949118cd0a86aView in MoNA
MSMass Spectrum (Electron Ionization)splash10-001i-9000000000-2885890e3bb8c015742fView in MoNA
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Bernstein EF, Lee J, Brown DB, Yu R, Van Scott E: Glycolic acid treatment increases type I collagen mRNA and hyaluronic acid content of human skin. Dermatol Surg. 2001 May;27(5):429-33. Pubmed: 11359487
  • Booth ED, Dofferhoff O, Boogaard PJ, Watson WP: Comparison of the metabolism of ethylene glycol and glycolic acid in vitro by precision-cut tissue slices from female rat, rabbit and human liver. Xenobiotica. 2004 Jan;34(1):31-48. Pubmed: 14742135
  • Dietzen DJ, Wilhite TR, Kenagy DN, Milliner DS, Smith CH, Landt M: Extraction of glyceric and glycolic acids from urine with tetrahydrofuran: utility in detection of primary hyperoxaluria. Clin Chem. 1997 Aug;43(8 Pt 1):1315-20. Pubmed: 9267307
  • DiNardo JC, Grove GL, Moy LS: Clinical and histological effects of glycolic acid at different concentrations and pH levels. Dermatol Surg. 1996 May;22(5):421-4. Pubmed: 8634803
  • Effendy I, Kwangsukstith C, Lee JY, Maibach HI: Functional changes in human stratum corneum induced by topical glycolic acid: comparison with all-trans retinoic acid. Acta Derm Venereol. 1995 Nov;75(6):455-8. Pubmed: 8651024
  • Guneral F, Bachmann C: Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem. 1994 Jun;40(6):862-6. Pubmed: 8087979
  • Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69. Pubmed: 8412012
  • Horikoshi T, Matsumoto M, Usuki A, Igarashi S, Hikima R, Uchiwa H, Hayashi S, Brysk MM, Ichihashi M, Funasaka Y: Effects of glycolic acid on desquamation-regulating proteinases in human stratum corneum. Exp Dermatol. 2005 Jan;14(1):34-40. Pubmed: 15660917
  • Jacobsen D, Hewlett TP, Webb R, Brown ST, Ordinario AT, McMartin KE: Ethylene glycol intoxication: evaluation of kinetics and crystalluria. Am J Med. 1988 Jan;84(1):145-52. Pubmed: 3337119
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Leumann EP, Dietl A, Matasovic A: Urinary oxalate and glycolate excretion in healthy infants and children. Pediatr Nephrol. 1990 Sep;4(5):493-7. Pubmed: 2242313
  • Mahul P, Molliex S, Auboyer C, Levigne F, Jospe R, Dumont A, Gilloz A: [Neurotoxic role of glycocolle and derivatives in transurethral resection of the prostate] Ann Fr Anesth Reanim. 1993;12(5):512-4. Pubmed: 8311360
  • Marangella M, Petrarulo M, Bianco O, Vitale C, Finocchiaro P, Linari F: Glycolate determination detects type I primary hyperoxaluria in dialysis patients. Kidney Int. 1991 Jan;39(1):149-54. Pubmed: 2002628
  • Marangella M, Petrarulo M, Vitale C, Cosseddu D, Linari F: Plasma and urine glycolate assays for differentiating the hyperoxaluria syndromes. J Urol. 1992 Sep;148(3 Pt 2):986-9. Pubmed: 1507356
  • Newman N, Newman A, Moy LS, Babapour R, Harris AG, Moy RL: Clinical improvement of photoaged skin with 50% glycolic acid. A double-blind vehicle-controlled study. Dermatol Surg. 1996 May;22(5):455-60. Pubmed: 8634809
  • Pien K, van Vlem B, van Coster R, Dacremont G, Piette M: An inherited metabolic disorder presenting as ethylene glycol intoxication in a young adult. Am J Forensic Med Pathol. 2002 Mar;23(1):96-100. Pubmed: 11953504
  • Porter WH, Rutter PW, Bush BA, Pappas AA, Dunnington JE: Ethylene glycol toxicity: the role of serum glycolic acid in hemodialysis. J Toxicol Clin Toxicol. 2001;39(6):607-15. Pubmed: 11762669
  • Porter WH, Rutter PW, Yao HH: Simultaneous determination of ethylene glycol and glycolic acid in serum by gas chromatography-mass spectrometry. J Anal Toxicol. 1999 Nov-Dec;23(7):591-7. Pubmed: 10595845
  • Roe FJ: Perspectives in carbohydrate toxicology with special reference to carcinogenicity. Swed Dent J. 1984;8(3):99-111. Pubmed: 6592775
  • Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38. Pubmed: 2026685
  • Tsiafoulis CG, Prodromidis MI, Karayannis MI: Development of amperometric biosensors for the determination of glycolic acid in real samples. Anal Chem. 2002 Jan 1;74(1):132-9. Pubmed: 11795781
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference:Witzemann, Edgar J. Preparation of glycollic acid. Journal of the American Chemical Society (1917), 39 109-12.
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID29805
HMDB IDHMDB00115
Pubchem Compound ID757
Kegg IDC03547
ChemSpider ID737
WikipediaGlycolic acid
BioCyc IDGLYCOLLATE
EcoCyc IDGLYCOLLATE
Ligand ExpoGOA

Enzymes

General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Catalyzes the NADPH-dependent reduction of glyoxylate and hydroxypyruvate into glycolate and glycerate, respectively. Inactive towards 2-oxo-D-gluconate, 2-oxoglutarate, oxaloacetate and pyruvate. Only D- and L-glycerate are involved in the oxidative activity with NADP. Activity with NAD is very low
Gene Name:
ghrA
Uniprot ID:
P75913
Molecular weight:
35343
Reactions
Glycolate + NADP(+) = glyoxylate + NADPH.
D-glycerate + NAD(P)(+) = hydroxypyruvate + NAD(P)H.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Catalyzes the NADPH-dependent reduction of glyoxylate and hydroxypyruvate into glycolate and glycerate, respectively. Can also reduce 2,5-diketo-D-gluconate (25DKG) to 5-keto-D- gluconate (5KDG), 2-keto-D-gluconate (2KDG) to D-gluconate, and 2- keto-L-gulonate (2KLG) to L-idonate (IA), but it is not its physiological function. Inactive towards 2-oxoglutarate, oxaloacetate, pyruvate, 5-keto-D-gluconate, D-fructose and L- sorbose. Activity with NAD is very low
Gene Name:
ghrB
Uniprot ID:
P37666
Molecular weight:
35395
Reactions
Glycolate + NADP(+) = glyoxylate + NADPH.
D-glycerate + NAD(P)(+) = hydroxypyruvate + NAD(P)H.
D-gluconate + NADP(+) = 2-dehydro-D-gluconate + NADPH.
General function:
Involved in catalytic activity
Specific function:
Specific function unknown
Gene Name:
glcD
Uniprot ID:
P0AEP9
Molecular weight:
53811
General function:
Involved in iron-sulfur cluster binding
Specific function:
Specific function unknown
Gene Name:
glcF
Uniprot ID:
P52074
Molecular weight:
45110
General function:
Involved in catalytic activity
Specific function:
Specific function unknown
Gene Name:
glcE
Uniprot ID:
P52073
Molecular weight:
38361
General function:
Involved in oxidoreductase activity
Specific function:
Acts on lactaldehyde as well as other aldehydes
Gene Name:
aldA
Uniprot ID:
P25553
Molecular weight:
52272
Reactions
(S)-lactaldehyde + NAD(+) + H(2)O = (S)-lactate + NADH.
Glycolaldehyde + NAD(+) + H(2)O = glycolate + NADH.
General function:
Involved in catalytic activity
Specific function:
Specifically catalyzes the dephosphorylation of 2- phosphoglycolate. Is involved in the dissimilation of the intracellular 2-phosphoglycolate formed during the DNA repair of 3'-phosphoglycolate ends, a major class of DNA lesions induced by oxidative stress
Gene Name:
gph
Uniprot ID:
P32662
Molecular weight:
27389
Reactions
2-phosphoglycolate + H(2)O = glycolate + phosphate.

Transporters

General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368
General function:
Involved in lactate transmembrane transporter activity
Specific function:
Transports L-lactate across the membrane. Can also transport D-lactate and glycolate. Seems to be driven by a proton motive force
Gene Name:
lldP
Uniprot ID:
P33231
Molecular weight:
59168
General function:
Involved in lactate transmembrane transporter activity
Specific function:
Transports glycolate across the membrane. Can also transport L-lactate and D-lactate. Seems to be driven by a proton motive force
Gene Name:
glcA
Uniprot ID:
Q46839
Molecular weight:
58920
General function:
Involved in transporter activity
Specific function:
Transports acetate. Also able to transport glycolate
Gene Name:
actP
Uniprot ID:
P32705
Molecular weight:
59197