Record Information
Creation Date2012-05-31 13:01:27 -0600
Update Date2015-06-03 15:53:35 -0600
Secondary Accession Numbers
  • ECMDB00830
Name:N-Acetylneuraminic acid
DescriptionN-acetylneuraminic acid (NeuAc) or sialic acid (SA) is an acetyl derivative of the amino sugar neuraminic acid. It occurs in many glycoproteins, glycolipids, and polysaccharides in both mammals and bacteria. The most abundant sialic acid, NeuAc, is synthesized in vivo from N-acetylated D-mannosamine (ManNAc) or D-glucosamine (GlcNAc). NeuAc and its activated form, CMP-NeuAc, are biosynthesized in five consecutive reactions: UDP-N-acetylglucosamine (UDP-GlcNAc) -> N-acetylmannosamine (ManNAc) -> ManNAc 6-phosphate -> NeuAc 9-phosphate -> NeuAc -> CMP-NeuAc. SA is an N-acetylated derivative of neuraminic acid that is an abundant terminal monosaccharide of glycoconjugates. Negatively charged SA units stabilize glycoprotein conformation in cell surface receptors to increase cell rigidity. This enables signal recognition and adhesion to ligands, antibodies, enzymes and microbes. SA residues are antigenic determinant residues in carbohydrate chains of glycolipids and glycoproteins. SA are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host SA is to regulate innate immunity. Sialylation (sialic acid linked to galactose, N-acetylgalactosamine, or linked to another sialic acid) represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. The biosynthesis of the various linkages is mediated by the different members of the sialyltransferase family. (PMID: 12770781, 15007099)
  • 5-(Acetylamino)-3,5-dideoxy-D-glycero-b-D-galacto-2-Nonulopyranosonate
  • 5-(Acetylamino)-3,5-dideoxy-D-glycero-b-D-galacto-2-Nonulopyranosonic acid
  • 5-(Acetylamino)-3,5-dideoxy-D-glycero-D-galacto-2-Nonulosonate
  • 5-(Acetylamino)-3,5-dideoxy-D-glycero-D-galacto-2-Nonulosonic acid
  • 5-(acetylamino)-3,5-Dideoxy-delta-glycero-b-delta-galacto-2-nonulopyranosonate
  • 5-(acetylamino)-3,5-Dideoxy-delta-glycero-b-delta-galacto-2-nonulopyranosonic acid
  • 5-(Acetylamino)-3,5-dideoxy-delta-glycero-beta-delta-galacto-2-Nonulopyranosonate
  • 5-(Acetylamino)-3,5-dideoxy-delta-glycero-beta-delta-galacto-2-Nonulopyranosonic acid
  • 5-(Acetylamino)-3,5-dideoxy-delta-glycero-delta-galacto-2-Nonulosonate
  • 5-(Acetylamino)-3,5-dideoxy-delta-glycero-delta-galacto-2-Nonulosonic acid
  • 5-(acetylamino)-3,5-Dideoxy-δ-glycero-b-δ-galacto-2-nonulopyranosonate
  • 5-(acetylamino)-3,5-Dideoxy-δ-glycero-b-δ-galacto-2-nonulopyranosonic acid
  • 5-(acetylamino)-3,5-Dideoxy-δ-glycero-β-δ-galacto-2-nonulopyranosonate
  • 5-(acetylamino)-3,5-Dideoxy-δ-glycero-β-δ-galacto-2-nonulopyranosonic acid
  • 5-(acetylamino)-3,5-Dideoxy-δ-glycero-δ-galacto-2-nonulosonate
  • 5-(acetylamino)-3,5-Dideoxy-δ-glycero-δ-galacto-2-nonulosonic acid
  • 5-acetamido-3,5-Dideoxy-D-glycero-D-galacto-2-nonulosonate
  • 5-acetamido-3,5-dideoxy-D-glycero-D-galacto-2-nonulosonic acid
  • 5-acetamido-3,5-Dideoxy-D-glycero-D-galacto-non-2-ulopyranosonate
  • 5-acetamido-3,5-dideoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid
  • 5-Acetamido-3,5-dideoxy-D-glycero-D-galacto-Nonulosonate
  • 5-Acetamido-3,5-dideoxy-D-glycero-D-galacto-Nonulosonic acid
  • 5-Acetamido-3,5-dideoxy-delta-glycero-delta-galacto-Nonulosonate
  • 5-Acetamido-3,5-dideoxy-delta-glycero-delta-galacto-Nonulosonic acid
  • 5-acetamido-3,5-Dideoxy-δ-glycero-δ-galacto-nonulosonate
  • 5-acetamido-3,5-Dideoxy-δ-glycero-δ-galacto-nonulosonic acid
  • 5-N-Acetyl-b-D-neuraminate
  • 5-N-Acetyl-b-D-neuraminic acid
  • 5-N-Acetyl-b-delta-neuraminate
  • 5-N-Acetyl-b-delta-neuraminic acid
  • 5-N-Acetyl-b-δ-neuraminate
  • 5-N-Acetyl-b-δ-neuraminic acid
  • 5-N-Acetyl-beta-D-neuraminate
  • 5-N-Acetyl-beta-D-neuraminic acid
  • 5-N-Acetyl-beta-delta-neuraminate
  • 5-N-Acetyl-beta-delta-neuraminic acid
  • 5-N-Acetyl-D-neuraminate
  • 5-N-Acetyl-D-neuraminic acid
  • 5-N-Acetyl-delta-neuraminate
  • 5-N-Acetyl-delta-neuraminic acid
  • 5-N-Acetyl-β-D-neuraminate
  • 5-N-Acetyl-β-D-neuraminic acid
  • 5-N-Acetyl-β-δ-neuraminate
  • 5-N-Acetyl-β-δ-neuraminic acid
  • 5-N-Acetyl-δ-neuraminate
  • 5-N-Acetyl-δ-neuraminic acid
  • 5-N-Acetylneuraminate
  • 5-N-Acetylneuraminic acid
  • N-acetylneuraminic acid
  • Aceneuramate
  • Aceneuramic acid
  • Acetylneuraminate
  • Acetylneuraminic acid
  • B-5-Acetamido-3,5-dideoxy-D-glycero-D-galacto-Nonulopyranosonate
  • B-5-Acetamido-3,5-dideoxy-D-glycero-D-galacto-Nonulopyranosonic acid
  • b-5-acetamido-3,5-Dideoxy-delta-glycero-delta-galacto-nonulopyranosonate
  • b-5-acetamido-3,5-Dideoxy-delta-glycero-delta-galacto-nonulopyranosonic acid
  • b-5-acetamido-3,5-Dideoxy-δ-glycero-δ-galacto-nonulopyranosonate
  • b-5-acetamido-3,5-Dideoxy-δ-glycero-δ-galacto-nonulopyranosonic acid
  • B-Sialate
  • B-Sialic acid
  • Beta-5-Acetamido-3,5-dideoxy-delta-glycero-delta-galacto-Nonulopyranosonate
  • Beta-5-Acetamido-3,5-dideoxy-delta-glycero-delta-galacto-Nonulopyranosonic acid
  • Beta-Sialate
  • Beta-Sialic acid
  • Lactaminate
  • Lactaminic acid
  • N-Acetyl-b-D-neuraminate
  • N-Acetyl-b-D-neuraminic acid
  • N-Acetyl-b-delta-neuraminate
  • N-Acetyl-b-delta-neuraminic acid
  • N-Acetyl-b-neuraminate
  • N-Acetyl-b-neuraminic acid
  • N-Acetyl-b-δ-neuraminate
  • N-Acetyl-b-δ-neuraminic acid
  • N-Acetyl-beta-delta-neuraminate
  • N-Acetyl-beta-delta-neuraminic acid
  • N-Acetyl-beta-neuraminate
  • N-Acetyl-beta-neuraminic acid
  • N-Acetyl-D-neuraminate
  • N-Acetyl-D-neuraminic acid
  • N-Acetyl-delta-neuraminate
  • N-Acetyl-delta-neuraminic acid
  • N-Acetyl-neuraminate
  • N-Acetyl-neuraminic acid
  • N-Acetyl-β-neuraminate
  • N-Acetyl-β-neuraminic acid
  • N-Acetyl-β-δ-neuraminate
  • N-Acetyl-β-δ-neuraminic acid
  • N-Acetyl-δ-neuraminate
  • N-Acetyl-δ-neuraminic acid
  • N-Acetylneuramate
  • N-Acetylneuramic acid
  • N-Acetylneuraminate
  • N-Acetylneuraminic acid
  • N-Acetylsialate
  • N-Acetylsialic acid
  • NAN
  • NANA
  • Neu5Ac
  • O-Sialate
  • O-sialic acid
  • Sialate
  • Sialic acid
  • β-5-acetamido-3,5-Dideoxy-δ-glycero-δ-galacto-nonulopyranosonate
  • β-5-acetamido-3,5-Dideoxy-δ-glycero-δ-galacto-nonulopyranosonic acid
  • β-Sialate
  • β-Sialic acid
Chemical Formula:C11H19NO9
Weight:Average: 309.2699
Monoisotopic: 309.105981211
CAS number:131-48-6
IUPAC Name:(2S,4S,5R,6R)-5-acetamido-2,4-dihydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid
Traditional IUPAC Name:β-neu5ac
Chemical Taxonomy
Description belongs to the class of organic compounds known as n-acylneuraminic acids. These are neuraminic acids carrying an N-acyl substituent.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentN-acylneuraminic acids
Alternative Parents
  • N-acylneuraminic acid
  • Neuraminic acid
  • C-glucuronide
  • C-glycosyl compound
  • Glycosyl compound
  • Alpha-hydroxy acid
  • Pyran
  • Hydroxy acid
  • Oxane
  • Acetamide
  • Carboxamide group
  • Hemiacetal
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxylic acid derivative
  • Carboxylic acid
  • Oxacycle
  • Organoheterocyclic compound
  • Monocarboxylic acid or derivatives
  • Polyol
  • Alcohol
  • Hydrocarbon derivative
  • Organic nitrogen compound
  • Organopnictogen compound
  • Primary alcohol
  • Organic oxide
  • Carbonyl group
  • Organonitrogen compound
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Physical Properties
Melting point:186 °C
Experimental Properties:
Predicted Properties
Water Solubility227 g/LALOGPS
pKa (Strongest Acidic)3ChemAxon
pKa (Strongest Basic)-1.3ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count7ChemAxon
Polar Surface Area176.78 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity63.78 m³·mol⁻¹ChemAxon
Polarizability27.82 ųChemAxon
Number of Rings1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
SMPDB Pathways:
N-acetylneuraminate and N-acetylmannosamine and N-acetylglucosamine degradationPW002030 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
  • Amino sugar and nucleotide sugar metabolism ec00520
EcoCyc Pathways:
  • N-acetylneuraminate and N-acetylmannosamine degradation PWY0-1324
Not Available
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (7 TMS)splash10-0fr2-1961000000-3acdbc4b39a5bf685996View in MoNA
GC-MSGC-MS Spectrum - GC-MS (6 TMS)splash10-014j-0492000000-8e4279660c77b0c70a30View in MoNA
GC-MSGC-MS Spectrum - GC-MS (1 MEOX; 7 TMS)splash10-00l6-1792200000-863a168c10243229e892View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0fr2-1961000000-3acdbc4b39a5bf685996View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-014j-0492000000-8e4279660c77b0c70a30View in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00l6-1792200000-863a168c10243229e892View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0h2f-9660000000-f7a1f63f319c23f8e72aView in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (5 TMS) - 70eV, Positivesplash10-0zfr-4620249000-1d39f85a16504ef9ea46View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00di-0190000000-a3a5aaa2e10a6cfed08aView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0fk9-3900000000-7100e174e13e94736ae7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00si-9300000000-1166885a787fd53086b0View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-01ox-1091000000-11c42df33f8993522db0View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03kc-5090000000-5d0c74aa0d8a2c8d321cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-03di-9320000000-cfda0db8085e62f50516View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4j-3391000000-68ee32ef5e2ba6223c42View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-000i-9110000000-9ae00577454ddf4db073View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-9300000000-798cb916675bb1245a78View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
  • Baumkotter J, Cantz M, Mendla K, Baumann W, Friebolin H, Gehler J, Spranger J: N-Acetylneuraminic acid storage disease. Hum Genet. 1985;71(2):155-9. Pubmed: 4043964
  • Bell JD, Brown JC, Nicholson JK, Sadler PJ: Assignment of resonances for 'acute-phase' glycoproteins in high resolution proton NMR spectra of human blood plasma. FEBS Lett. 1987 May 11;215(2):311-5. Pubmed: 2438159
  • Bosmann HB: Platelet adhesiveness and aggregation. II. Surface sialic acid, glycoprotein: N-acetylneuraminic acid transferase, and neuraminidase of human blood platelets. Biochim Biophys Acta. 1972 Oct 25;279(3):456-74. Pubmed: 5082512
  • Brusque A, Rotta L, Pettenuzzo LF, Junqueira D, Schwarzbold CV, Wyse AT, Wannmacher CM, Dutra-Filho CS, Wajner M: Chronic postnatal administration of methylmalonic acid provokes a decrease of myelin content and ganglioside N-acetylneuraminic acid concentration in cerebrum of young rats. Braz J Med Biol Res. 2001 Feb;34(2):227-31. Pubmed: 11175498
  • Dall'Olio F: The sialyl-alpha2,6-lactosaminyl-structure: biosynthesis and functional role. Glycoconj J. 2000 Oct;17(10):669-76. Pubmed: 11425186
  • Domschke W, Lux G, Domschke S: Furan H2-antagonist ranitidine inhibits pentagastrin-stimulated gastric secretion stronger than cimetidine. Gastroenterology. 1980 Dec;79(6):1267-71. Pubmed: 6108279
  • Gopaul KP, Crook MA: Sialic acid: a novel marker of cardiovascular disease? Clin Biochem. 2006 Jul;39(7):667-81. Epub 2006 Apr 19. Pubmed: 16624269
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keppler OT, Horstkorte R, Pawlita M, Schmidt C, Reutter W: Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology. 2001 Feb;11(2):11R-18R. Pubmed: 11287396
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Loomis RE, Prakobphol A, Levine MJ, Reddy MS, Jones PC: Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys. 1987 Nov 1;258(2):452-64. Pubmed: 3674885
  • McGee DJ, Rest RF: Regulation of gonococcal sialyltransferase, lipooligosaccharide, and serum resistance by glucose, pyruvate, and lactate. Infect Immun. 1996 Nov;64(11):4630-7. Pubmed: 8890217
  • Nakata D, Munster AK, Gerardy-Schahn R, Aoki N, Matsuda T, Kitajima K: Molecular cloning of a unique CMP-sialic acid synthetase that effectively utilizes both deaminoneuraminic acid (KDN) and N-acetylneuraminic acid (Neu5Ac) as substrates. Glycobiology. 2001 Aug;11(8):685-92. Pubmed: 11479279
  • Rack J, Sonnenberg A: The influence of smoking and intravenous nicotine on gastric mucus. Hepatogastroenterology. 1983 Dec;30(6):258-60. Pubmed: 6676147
  • Riebe D, Thorn W: Influence of carbohydrate moieties of human serum transferrin on the determination of its molecular mass by polyacrylamide gradient gel electrophoresis and staining with periodic acid-Schiff reagent. Electrophoresis. 1991 Apr;12(4):287-93. Pubmed: 2070783
  • Seppala R, Renlund M, Bernardini I, Tietze F, Gahl WA: Renal handling of free sialic acid in normal humans and patients with Salla disease or renal disease. Lab Invest. 1990 Aug;63(2):197-203. Pubmed: 2381164
  • Sonnenberg A, Steinkamp U, Weise A, Berges W, Wienbeck M, Rohner HG, Peter P: Salivary secretion in reflux esophagitis. Gastroenterology. 1982 Oct;83(4):889-95. Pubmed: 7106518
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Suzuki M, Suzuki A, Yamakawa T, Matsunaga E: Characterization of 2,7-anhydro-N-acetylneuraminic acid in human wet cerumen. J Biochem (Tokyo). 1985 Feb;97(2):509-15. Pubmed: 4008466
  • Tettamanti, G., Bassi, R., Viani, P., Riboni, L. (2003). "Salvage pathways in glycosphingolipid metabolism." Biochimie 85:423-437. Pubmed: 12770781
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM: Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev. 2004 Mar;68(1):132-53. Pubmed: 15007099
  • Watzlawick H, Walsh MT, Ehrhard I, Slayter HS, Haupt H, Schwick HG, Jourdian GW, Hase S, Schmid K, Brossmer R: The effect of the carbohydrate moiety upon the size and conformation of human plasma galactoglycoprotein as judged by electron microscopy and circular dichroism. Structural studies of a glycoprotein after stepwise enzymic carbohydrate removal. Biochem J. 1991 Aug 1;277 ( Pt 3):753-8. Pubmed: 1872812
  • Weiss P, Tietze F, Gahl WA, Seppala R, Ashwell G: Identification of the metabolic defect in sialuria. J Biol Chem. 1989 Oct 25;264(30):17635-6. Pubmed: 2808337
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Yamada K: [Chemo-pharmaceutical studies on the glycosphingolipid constituents from echinoderm, sea cucumbers, as the medicinal materials]. Yakugaku Zasshi. 2002 Dec;122(12):1133-43. Pubmed: 12510390
Synthesis Reference:Yamamoto, Toshihiro; Teshima, Tadashi; Inami, Kaoru; Shiba, Tetsuo. Synthesis of sialic acid through aldol condensation of glucose with oxalacetic acid. Tetrahedron Letters (1992), 33(3), 325-8.
Material Safety Data Sheet (MSDS)Not Available
External Links:
Pubchem Compound ID439197
Kegg IDC19910
ChemSpider ID392810
WikipediaN-Acetylneuraminic acid
Ligand ExpoSLB


General function:
Involved in catalytic activity
Specific function:
Catalyzes the cleavage of N-acetylneuraminic acid (sialic acid) to form pyruvate and N-acetylmannosamine via a Schiff base intermediate
Gene Name:
Uniprot ID:
Molecular weight:
N-acetylneuraminate = N-acetyl-D-mannosamine + pyruvate.
General function:
Involved in racemase and epimerase activity, acting on
Specific function:
Converts alpha-N-acetylneuranimic acid (Neu5Ac) to the beta-anomer, accelerating the equilibrium between the alpha- and beta-anomers. Probably facilitates sialidase-negative bacteria to compete sucessfully for limited amounts of extracellular Neu5Ac, which is likely taken up in the beta-anomer. In addition, the rapid removal of sialic acid from solution might be advantageous to the bacterium to damp down host responses
Gene Name:
Uniprot ID:
Molecular weight:
N-acetyl-alpha-neuraminate = N-acetyl-beta-neuraminate.


General function:
Involved in transmembrane transport
Specific function:
May be a sugar-cation symporter involved in sialic acid uptake
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transmembrane transport
Specific function:
May be a sugar-cation symporter involved in sialic acid uptake
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transmembrane transport
Specific function:
May be a sugar-cation symporter involved in sialic acid transport as it is required for sialic acid uptake
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in oligosaccharide transporting porin activity
Specific function:
Outer membrane channel protein allowing the entry of N- acetylneuraminic acid (Neu5Ac or sialic acid) into the bacteria (Probable). NanC proteins form high-conductance channels which are open at low membrane potentials and which have a weak anion selectivity
Gene Name:
Uniprot ID:
Molecular weight: