Record Information
Version2.0
Creation Date2012-05-31 13:00:23 -0600
Update Date2015-09-13 12:56:08 -0600
Secondary Accession Numbers
  • ECMDB00692
Identification
Name:Iron
Description:Iron is a chemical element with the symbol Fe and atomic number 26. Iron makes up 5% of the Earth's crust and is second in abundance to aluminium among the metals and fourth in abundance among the elements. Iron (as Fe2+, ferrous ion) is a necessary trace element used by all known living organisms. Iron-containing enzymes, usually containing heme prosthetic groups, participate in catalysis of oxidation reactions in biology, and in transport of a number of soluble gases. Its chief functions are in the transport of oxygen to tissue (hemoglobin) and in cellular oxidation mechanisms. Inorganic iron involved in redox reactions is also found in the iron-sulfur clusters of many enzymes, such as nitrogenase (involved in the synthesis of ammonia from nitrogen and hydrogen) and hydrogenase. A class of non-heme iron proteins is responsible for a wide range of functions such as ribonucleotide reductase (reduces ribose to deoxyribose; DNA biosynthesis) and purple acid phosphatase (hydrolysis of phosphate esters). When the body is fighting a bacterial infection, the body sequesters iron inside of cells (mostly stored in the storage molecule ferritin) so that it cannot be used by bacteria. Iron may promote both growth of E. coli. (PMID: 16151163)
Structure
Thumb
Synonyms:
  • Armco iron
  • Carbonyl iron
  • FE
  • Fe(ii)
  • Fe++
  • Fe+2
  • Fe2+
  • Fe++
  • Fe+2
  • Ferrous ion
  • Ferrous iron
  • Ferrovac e
  • Hematite
  • Infed
  • Limonite
  • LOHA
  • Magnetite
  • Malleable iron
  • Metopirone
  • Metyrapone
  • Pzh2M
  • PZHO
  • Remko
  • Suy-B 2
  • Taconite
  • Venofer
  • Wrought iron
Chemical Formula:Fe
Weight:Average: 55.845
Monoisotopic: 55.934942133
InChI Key:CWYNVVGOOAEACU-UHFFFAOYSA-N
InChI:InChI=1S/Fe/q+2
CAS number:7439-89-6
IUPAC Name:λ²-iron(2+) ion
Traditional IUPAC Name:λ²-iron(2+) ion
SMILES:[Fe++]
Chemical Taxonomy
DescriptionThis compound belongs to the class of chemical entities known as homogeneous transition metal compounds. These are inorganic compounds containing only metal atoms,with the largest atom being a transition metal atom.
KingdomChemical entities
Super ClassInorganic compounds
ClassHomogeneous metal compounds
Sub ClassHomogeneous transition metal compounds
Direct ParentHomogeneous transition metal compounds
Alternative ParentsNot Available
Substituents
  • Homogeneous transition metal
Molecular FrameworkNot Available
External Descriptors
Physical Properties
State:Solid
Charge:2
Melting point:1538 °C
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
logP-0.77ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity0 m3·mol-1ChemAxon
Polarizability1.78 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD scaffold complex + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with bound [2Fe-2S] cluster +2 SufSE sulfur acceptor complex
Adenosine triphosphate + FADH2 + 2 Iron + Water + SufBCD with bound [2Fe-2S] cluster + 2 SufSE with bound sulfur > ADP + FAD +7 Hydrogen ion + Phosphate + SufBCD with two bound [2Fe-2S] clusters +2 SufSE sulfur acceptor complex
FADH2 + 2 Iron + 2 IscS with bound sulfur + IscU scaffold protein > FAD +6 Hydrogen ion +2 IscS sulfur acceptor protein + IscU with bound [2Fe-2S] cluster
FADH2 + 2 Iron + 2 IscS with bound sulfur + IscU with bound [2Fe-2S] cluster > FAD +6 Hydrogen ion +2 IscS sulfur acceptor protein + IscU with two bound [2Fe-2S] clusters
4 Iron + 4 Hydrogen ion + Oxygen >4 Fe3+ +2 Water
Iron + Protoporphyrin IX >2 Hydrogen ion + Heme
[4Fe-4S] iron-sulfur cluster + 2 S-Adenosylmethionine + Hydrogen ion + NAD + octanoate (protein bound) > [2Fe-2S] iron-sulfur cluster +2 5'-Deoxyadenosine +2 Iron + lipoate (protein bound) +2 L-Methionine + NADH
Iron + Sirohydrochlorin >3 Hydrogen ion + Siroheme
Adenosine triphosphate + Water + Iron > ADP + Iron + Hydrogen ion + Phosphate
Adenosine triphosphate + Water + Iron > ADP + Iron + Hydrogen ion + Phosphate
FADH2 + 2 Fe3+ > FAD +2 Iron +2 Hydrogen ion
[3Fe-4S] damaged iron-sulfur cluster + Iron > [4Fe-4S] iron-sulfur cluster
FADH2 + 2 Ferroxamine > FAD +2 Iron +2 ferroxamine minus Fe(3) +2 Hydrogen ion
2 Ferroxamine + FMNH >2 Iron +2 ferroxamine minus Fe(3) + Flavin Mononucleotide +2 Hydrogen ion
2 Ferroxamine + Reduced riboflavin >2 Iron +2 ferroxamine minus Fe(3) +2 Hydrogen ion + Riboflavin
Hydrogen ion + Hydrogen peroxide + Iron > hydroxyl radical + OH<SUP>-</SUP> + Fe<SUP>3+</SUP>
Oxygen + Iron > Superoxide anion + Fe<SUP>3+</SUP>
Hydrogen ion + Heme Protoporphyrin IX + Iron
Iron + Protoporphyrin IX > Heme + Hydrogen ion
Iron + Hydrogen ion + Oxygen > Fe<SUP>3+</SUP> + Water
Iron + a siderophore + NADP < an Fe(III)-siderophore + NADPH + Hydrogen ion
Iron + (2,3-dihydroxybenzoylserine)<sub>3</sub> + NADP < ferric 2,3-dihydroxybenzoylserine + NADPH + Hydrogen ion
Sirohydrochlorin + Iron <> Hydrogen ion + Siroheme
4 Iron + 4 Hydrogen ion + Oxygen >4 Fe3+ +2 Water
Siroheme + 2 Hydrogen ion > Sirohydrochlorin + Iron

SMPDB Pathways:
2-Oxopent-4-enoate metabolismPW001890 Pw001890Pw001890 greyscalePw001890 simple
2-Oxopent-4-enoate metabolism 2PW002035 Pw002035Pw002035 greyscalePw002035 simple
Biosynthesis of siderophore group nonribosomal peptidesPW000760 Pw000760Pw000760 greyscalePw000760 simple
Collection of Reactions without pathwaysPW001891 Pw001891Pw001891 greyscalePw001891 simple
L-threonine degradation to methylglyoxalPW002106 Pw002106Pw002106 greyscalePw002106 simple
Porphyrin metabolismPW000936 Pw000936Pw000936 greyscalePw000936 simple
Pyrimidine metabolismPW000942 Pw000942Pw000942 greyscalePw000942 simple
threonine biosynthesisPW000817 Pw000817Pw000817 greyscalePw000817 simple
KEGG Pathways:
  • Biosynthesis of siderophore group nonribosomal peptides ec01053
  • Pyrimidine metabolism ec00240
  • Two-component system ec02020
EcoCyc Pathways:Not Available
Concentrations
ConcentrationStrainMediaGrowth StatusGrowth SystemTemperatureDetails
18000± 0 uMK-12Not AvailableNot AvailableNot AvailableNot Available1. Cybercell Database: http://ccdb.wishartlab.com/CCDB/cgi-bin/STAT_NEW.cgi
2. Phillips R., Kondev, J., Theriot, J. (2008) “Physical Biology of the Cell” Garland Science, New York, NY.
Find out more about how we convert literature concentrations.
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-9000000000-af3e7aec4f5bd9668683View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-9000000000-af3e7aec4f5bd9668683View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4i-9000000000-af3e7aec4f5bd9668683View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0udi-9000000000-3335fec4c3184739b75eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0udi-9000000000-3335fec4c3184739b75eView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0udi-9000000000-3335fec4c3184739b75eView in MoNA
References
References:
  • Agarwal MB: Exjade (ICL 670): A new oral iron chelator. J Assoc Physicians India. 2006 Mar;54:214-7. Pubmed: 16800349
  • Anderson LJ, Westwood MA, Prescott E, Walker JM, Pennell DJ, Wonke B: Development of thalassaemic iron overload cardiomyopathy despite low liver iron levels and meticulous compliance to desferrioxamine. Acta Haematol. 2006;115(1-2):106-8. Pubmed: 16424659
  • Appenzeller, B. M., Yanez, C., Jorand, F., Block, J. C. (2005). "Advantage provided by iron for Escherichia coli growth and cultivability in drinking water." Appl Environ Microbiol 71:5621-5623. Pubmed: 16151163
  • Barkova EN, Nazarenko EV, Zhdanova EV: Diurnal variations in qualitative composition of breast milk in women with iron deficiency. Bull Exp Biol Med. 2005 Oct;140(4):394-6. Pubmed: 16671562
  • Blanck HM, Cogswell ME, Gillespie C, Reyes M: Iron supplement use and iron status among US adults: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr. 2005 Nov;82(5):1024-31. Pubmed: 16280434
  • Christoforidis A, Haritandi A, Tsitouridis I, Tsatra I, Tsantali H, Karyda S, Dimitriadis AS, Athanassiou-Metaxa M: Correlative study of iron accumulation in liver, myocardium, and pituitary assessed with MRI in young thalassemic patients. J Pediatr Hematol Oncol. 2006 May;28(5):311-5. Pubmed: 16772883
  • Clardy SL, Earley CJ, Allen RP, Beard JL, Connor JR: Ferritin subunits in CSF are decreased in restless legs syndrome. J Lab Clin Med. 2006 Feb;147(2):67-73. Pubmed: 16459164
  • Cortese S, Konofal E, Lecendreux M, Mouren MC, Bernardina BD: Restless legs syndrome triggered by heart surgery. Pediatr Neurol. 2006 Sep;35(3):223-6. Pubmed: 16939866
  • Custodio PJ, Carvalho ML, Nunes F, Pedroso S, Campos A: Direct analysis of human blood (mothers and newborns) by energy dispersive X-ray fluorescence. J Trace Elem Med Biol. 2005;19(2-3):151-8. Epub 2005 Oct 24. Pubmed: 16325530
  • Gal S, Fridkin M, Amit T, Zheng H, Youdim MB: M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson's disease. J Neural Transm Suppl. 2006;(70):447-56. Pubmed: 17017567
  • Gerlach M, Double KL, Youdim MB, Riederer P: Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Suppl. 2006;(70):133-42. Pubmed: 17017520
  • Grosse R, Lund U, Caruso V, Fischer R, Janka GE, Magnano C, Engelhardt R, Durken M, Nielsen P: Non-transferrin-bound iron during blood transfusion cycles in beta-thalassemia major. Ann N Y Acad Sci. 2005;1054:429-32. Pubmed: 16339692
  • Jost PJ, Stengel SM, Huber W, Sarbia M, Peschel C, Duyster J: Very severe iron-deficiency anemia in a patient with celiac disease and bulimia nervosa: a case report. Int J Hematol. 2005 Nov;82(4):310-1. Pubmed: 16298820
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kom GD, Schwedhelm E, Nielsen P, Boger RH: Increased urinary excretion of 8-iso-prostaglandin F2alpha in patients with HFE-related hemochromatosis: a case-control study. Free Radic Biol Med. 2006 Apr 1;40(7):1194-200. Epub 2005 Dec 13. Pubmed: 16545687
  • Kontoghiorghes GJ, Kolnagou A: Molecular factors and mechanisms affecting iron and other metal excretion or absorption in health and disease: the role of natural and synthetic chelators. Curr Med Chem. 2005;12(23):2695-709. Pubmed: 16305466
  • Matinaho S, Karhumaki P, Parkkinen J: Bicarbonate inhibits the growth of Staphylococcus epidermidis in platelet concentrates by lowering the level of non-transferrin-bound iron. Transfusion. 2005 Nov;45(11):1768-73. Pubmed: 16271102
  • Nasolodin VV, Zaitseva IP, Gladkikh IP, Voronin SM: [Correction of iron and immune deficiencies in students from a higher humanitarian educational establishment] Gig Sanit. 2005 Sep-Oct;(5):64-7. Pubmed: 16277000
  • Piga A, Galanello R, Forni GL, Cappellini MD, Origa R, Zappu A, Donato G, Bordone E, Lavagetto A, Zanaboni L, Sechaud R, Hewson N, Ford JM, Opitz H, Alberti D: Randomized phase II trial of deferasirox (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload. Haematologica. 2006 Jul;91(7):873-80. Pubmed: 16818273
  • St Pierre TG, Clark PR, Chua-Anusorn W: Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci. 2005;1054:379-85. Pubmed: 16339686
  • Walter PB, Fung EB, Killilea DW, Jiang Q, Hudes M, Madden J, Porter J, Evans P, Vichinsky E, Harmatz P: Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol. 2006 Oct;135(2):254-63. Pubmed: 17010049
  • Yarali N, Fisgin T, Duru F, Kara A, Ecin N, Fitoz S, Erden I: Subcutaneous bolus injection of deferoxamine is an alternative method to subcutaneous continuous infusion. J Pediatr Hematol Oncol. 2006 Jan;28(1):11-6. Pubmed: 16394886
Synthesis Reference:Not Available
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID18248
HMDB IDHMDB00692
Pubchem Compound ID23925
Kegg IDC00023
ChemSpider ID25394
WikipediaIron
BioCyc IDFE+2
EcoCyc IDFE+2
Ligand ExpoFE2

Enzymes

General function:
Involved in metabolic process
Specific function:
Catalyzes the removal of elemental sulfur and selenium atoms from cysteine and selenocysteine to produce alanine. Functions as a sulfur delivery protein for NAD, biotin and Fe-S cluster synthesis. Transfers sulfur on 'Cys-456' of thiI in a transpersulfidation reaction. Transfers sulfur on 'Cys-19' of tusA in a transpersulfidation reaction. Functions also as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate
Gene Name:
iscS
Uniprot ID:
P0A6B7
Molecular weight:
45089
Reactions
L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor.
General function:
Involved in methyltransferase activity
Specific function:
Multifunctional enzyme that catalyzes the SAM-dependent methylation of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 and then position C-12 or C-18 to form trimethylpyrrocorphin 2. It also catalyzes the conversion of precorrin-2 into siroheme. This reaction consists of the NAD- dependent oxidation of precorrin-2 into sirohydrochlorin and its subsequent ferrochelation into siroheme
Gene Name:
cysG
Uniprot ID:
P0AEA8
Molecular weight:
49951
Reactions
S-adenosyl-L-methionine + uroporphyrinogen III = S-adenosyl-L-homocysteine + precorrin-1.
S-adenosyl-L-methionine + precorrin-1 = S-adenosyl-L-homocysteine + precorrin-2.
Precorrin-2 + NAD(+) = sirohydrochlorin + NADH.
Siroheme + 2 H(+) = sirohydrochlorin + Fe(2+).
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the reduction of soluble flavins by reduced pyridine nucleotides. Seems to reduces the complexed Fe(3+) iron of siderophores to Fe(2+), thus releasing it from the chelator
Gene Name:
fre
Uniprot ID:
P0AEN1
Molecular weight:
26242
Reactions
Reduced riboflavin + NAD(P)(+) = riboflavin + NAD(P)H.
2 cob(II)alamin + NAD(+) = 2 aquacob(III)alamin + NADH.
General function:
Involved in ferrochelatase activity
Specific function:
Catalyzes the ferrous insertion into protoporphyrin IX
Gene Name:
hemH
Uniprot ID:
P23871
Molecular weight:
35884
Reactions
Protoheme + 2 H(+) = protoporphyrin + Fe(2+).
General function:
Involved in oxidoreductase activity
Specific function:
Probably involved in periplasmic detoxification of copper by oxidizing Cu(+) to Cu(2+) and thus preventing its uptake into the cytoplasm. Possesses phenoloxidase and ferroxidase activities and might be involved in the production of polyphenolic compounds and the prevention of oxidative damage in the periplasm
Gene Name:
cueO
Uniprot ID:
P36649
Molecular weight:
56556
General function:
Involved in 2 iron, 2 sulfur cluster binding
Specific function:
Involved in the reduction of ferric iron in cytoplasmic ferrioxamine B
Gene Name:
fhuF
Uniprot ID:
P39405
Molecular weight:
30113
General function:
Involved in catalytic activity
Specific function:
Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. Free octanoate is not a substrate for lipA
Gene Name:
lipA
Uniprot ID:
P60716
Molecular weight:
36071
Reactions
Protein N(6)-(octanoyl)lysine + 2 sulfur + 2 S-adenosyl-L-methionine = protein N(6)-(lipoyl)lysine + 2 L-methionine + 2 5'-deoxyadenosine.
General function:
Involved in metabolic process
Specific function:
Cysteine desulfurases mobilize the sulfur from L- cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo
Gene Name:
sufS
Uniprot ID:
P77444
Molecular weight:
44433
Reactions
L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor.
L-selenocysteine + reduced acceptor = selenide + L-alanine + acceptor.
General function:
Involved in nucleotide binding
Specific function:
Has low ATPase activity. The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation
Gene Name:
sufC
Uniprot ID:
P77499
Molecular weight:
27582
General function:
Involved in GTP binding
Specific function:
GTP-driven Fe(2+) uptake system
Gene Name:
feoB
Uniprot ID:
P33650
Molecular weight:
84473
General function:
Involved in iron-sulfur cluster assembly
Specific function:
The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation
Gene Name:
sufB
Uniprot ID:
P77522
Molecular weight:
54745
General function:
Inorganic ion transport and metabolism
Specific function:
Specific function unknown
Gene Name:
cyaY
Uniprot ID:
P27838
Molecular weight:
12231
General function:
Involved in iron ion binding
Specific function:
May be involved in the formation or repair of [Fe-S] clusters present in iron-sulfur proteins (Potential)
Gene Name:
nifU
Uniprot ID:
P0ACD4
Molecular weight:
13848
General function:
Not Available
Specific function:
Participates in cysteine desulfuration mediated by sufS. Cysteine desulfuration mobilizes sulfur from L-cysteine to yield L-alanine and constitutes an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Functions as a sulfur acceptor for sufS, by mediating the direct transfer of the sulfur atom from the S-sulfanylcysteine of sufS, an intermediate product of cysteine desulfuration process. Together with the sufBCD complex, it thereby enhances up to 50- fold, the cysteine desulfurase activity of sufS. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Does not affect the selenocysteine lyase activity of sufS
Gene Name:
sufE
Uniprot ID:
P76194
Molecular weight:
15800
General function:
Involved in iron-sulfur cluster assembly
Specific function:
The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the fhuF protein
Gene Name:
sufD
Uniprot ID:
P77689
Molecular weight:
46822
General function:
Involved in response to stress
Specific function:
Involved in anaerobic NO protection
Gene Name:
ytfE
Uniprot ID:
P69506
Molecular weight:
24882
General function:
Not Available
Specific function:
Not Available
Gene Name:
ftnA
Uniprot ID:
P0A998
Molecular weight:
Not Available
General function:
Inorganic ion transport and metabolism
Specific function:
May perform analogous functions in iron detoxification and storage to that of animal ferritins
Gene Name:
bfr
Uniprot ID:
P0ABD3
Molecular weight:
18495
Reactions
4 Fe(2+) + 4 H(+) + O(2) = 4 Fe(3+) + 2 H(2)O.
General function:
Inorganic ion transport and metabolism
Specific function:
Not Available
Gene Name:
yqjH
Uniprot ID:
Q46871
Molecular weight:
28871
Reactions
2 Fe(II) + 2 an apo-siderophore + NADP(+) + H(+) = 2 an Fe(III)-siderophore + NADPH.

Transporters

General function:
Involved in nucleotide binding
Specific function:
Has low ATPase activity. The sufBCD complex acts synergistically with sufE to stimulate the cysteine desulfurase activity of sufS. The sufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation
Gene Name:
sufC
Uniprot ID:
P77499
Molecular weight:
27582
General function:
Involved in metal ion transmembrane transporter activity
Specific function:
Mediates zinc uptake. May also transport other divalent cations such as copper and cadmium ions
Gene Name:
zupT
Uniprot ID:
P0A8H3
Molecular weight:
26484
General function:
Involved in transmembrane transport
Specific function:
Functions only as an uptake system for Fe(2+) ion acquisition
Gene Name:
efeU
Uniprot ID:
P75901
Molecular weight:
30238
General function:
Involved in GTP binding
Specific function:
GTP-driven Fe(2+) uptake system
Gene Name:
feoB
Uniprot ID:
P33650
Molecular weight:
84473
General function:
Involved in transporter activity
Specific function:
H(+)-stimulated, highly selective, manganese uptake system. Can also transport cadmium, cobalt, iron, zinc and to a lesser extent nickel and copper. Involved in response to reactive oxygen
Gene Name:
mntH
Uniprot ID:
P0A769
Molecular weight:
44193
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in cation transmembrane transporter activity
Specific function:
Iron-efflux transporter responsible for iron detoxification. Also able to transport Zn(2+) in a proton- dependent manner
Gene Name:
fieF
Uniprot ID:
P69380
Molecular weight:
32927
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368